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1 Introduction

With the advances made in electronics and computing it has become necessary to

reevaluate the internal avionics and communicatiovs systems of launch vehicles. In the past

a central flight computer has been responsible for collecting all sensor data, performing all

data manipulation, and controlling actuators. This was a result of the high cost of computing

hardware and it's large size. As microprocessor technology has evolved it has become both

feasible and desirable to off-load some of the routi_ae computational task from the main flight

computer. This may be accomplished by the replacement of sensors and controllers by smart

sensors and smart controllers. These smart systems would be based on a microprocessor

such as the MC68000 and could perform some of the data computation tasks usually

assigned to the flight controller. This architecture has the advantage of off-loading the com-

putations from the main flight computer at the :ost of requiring more data tr/msfers and

increasing the complexity of ground checkout. However, distributed processing does provide

some increased reliability in that it tends to reduce single point failure opportunities.

1.1 Background

Past launch vehicles such as the Centaur have typically used a command/response

system for communications. These systems haw', usually used a subset of the MIL-STD-

1553B local area network protocol. This systera has adequately served the needs of the

vehicles because the required data rates were approximately 1 Kbit/second with peaks to 1

Mbit/second. As advanced technology and additional systems are added to the avionics sys-

tem this protocol will become inadequate.

1.2 Purpose

The purpose of this project is to study the application of local area network technology

to the communications problems presented by the introduction of new sensors and distribut-

ed computing systems in advanced launch vehicl_:s. The introduction of these systems will



require changes in the basic philosophy of the communications system. The application of

distributed computing will require that the distributed processors may take command of the

communications system in order to collect data and to inform the main flight controller of the

final results of computations. This will involve a change from the command/response system

presently used to either a token passing or contention system so that applicable results may

be transferred to the flight controller when they are available rather than waiting for polling.

The probabilistic nature of distributed computing system communication would make the effi-

cient application of a scheduled communication system very difficult. There are however

many constraints that must be met by the communications system of a launch vehicle. These

include reliability, fault tolerance, guarantees of data delivery, maximum allowable data laten-

cy, ability to withstand severe environmental conditions, and the ability to gracefully survive

dynamic configuration changes caused by the jettisoning of a spent stage in a multistage

launch vehicle.

1.3 Objectives, Conditions and Scope of the Study

1.3.1 Conditions

The objective of this study is to determine a suitable local area network architec-

ture/hardware/protocol system for advanced launch vehicles. The goal of this study is to

determine a system that would be suitable for several generations of advance launch sys-

tems as evolving sensor and distributed processing technology is applied to these systems.

In order to provide a system that may be used with evolving technology a direction of evolu-

tion for advanced launch vehicles must be assumed. It is assumed that a multistage launch

vehicle will be required for heavy lift systems for at least the next ten years. For the pur-

pose of the study three stages will be assumed. The evolution and application of smart sen-

sor technology will f'u'st require an increase in the total amount of data transferred between

sensor systems and the main flight computer and then a decrease in traffic as intelligent sen-

sors and distributed processing are employed. The increase in traffic will be caused by addi-
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tional data,such as data trends being sent to the flight controller along with the sensor data.

However, as confidence and expertise in smart serlsors and smart systems grows the flight

controller will only be informed of changes and state of health while the subsystem controller

will be left to control the subsystem. This will lead to a reduction in the amount of traffic on

the main bus. The requirements of reliability, guar_teed data delivery and data latency will

remain unchanged throughout the program. This is _flso hold true for the requirement of being

able to withstand severe environmental conditions.

Present communication systems for launch ,,ehicles operate at an average load of 100

to 400 kilobits/second with bursts of up to 1 megal_it/second. These data rate characteristics

have been used for the Shuttle, OTV, ROI, RFL5 and other missions[BOEI87]. The data

rates from these missions were used by Boeing in an Air Force study to determine the data

requirements for next generation vehicles. Their study concluded that a 22.4 megabiffsecond

local area network would be required to service these vehicles (This data was taken from

missions that did not have docking radar or RF communications on the avionics bus). These

data rates are however, increasing and the following is an estimate by Mississippi State Uni-

versity of the data rates that may be expected for 199.5 to 2000 missions.

1.3.1.1 Vehicle Node Communications Requirements

The communications load for the ALS study is determined to fall within the

parameters listed below. Typical nodes are presentec with an additional station, RADAR,

added to include future development where the data 1tom complex radars may be put on the

avionics bus. The nodes are:

NODE 1, SENSORS

Assume 100 sensors/stage and three stages.

Assume 100 samples/second and a 32 bit sar_ple.

3 x 100 x 100 x 32 = 962 kilobits/second (Kbps)



Assume6%overheadfor transmission

Maximumdatarateis 962Kbpsx 1.06- 1.02Mbps

NODE 2, ENGINE CONTROLLER/SEQUENCER

Maximum data rate 1 Mbps maximum with overhead

NODE 3, POWER

100 parameters at 10 samples/second with 32 bits/sample

32 Kbps/second

6 % overhead

Maximum data rate 34 Kbps/second

NODE 4, TRANSPONDER

100 bytes/transmission 10 transmissions/second

Maximum data rate 8 Kbps

NODE 5, ENGINE HEALTH MONITOR

Assume ABACS type monitoring system

with only 10 of the 16 stations active at a time

Maximum data rate High estimate of 160 Kbps with overhead

This is all the data flow of the internal test bus which would only be put on the

main system to be sent to the archives.

NODE 6, CONTROL COMPUTER

Maximum data rate 1 Mbps with overhead

4



NODE7, SIMULATOR

Usedto replaceanotherstationon thebusor provide input datafor simulation

MaximumdatarateWorst case1Mbpswith overhead

NODE8, ETC

Thisnodeis usedto connectauxiliary ser_icesto thefacility andwill usuallybe

usedasadestinationonly. Whenusedasageneratingstationa maximumoffered

loadof I0 Mbpswill beusedfor modelingpurposes.

At this point themaximumloadis 14.222Mbpswhich could be serviced by many local

area networks. The addition of a high data rate statioa such as a radar station will be

considered next. This station will be designated node 9. "-

NODE 9, RADAR UNIT

CASE 1

1 operating radar with 60 - 100 updates/second

5 bytes/parameter and 10 parameters

100 byte packet with overhead in updates

Maximum data rate 100 bytes x 100 - 10000 Bps = 80 Kbps

This radar could easily be added to a local area network serving nodes one

through eight.

CASE 2:

The raw radar information from a 50 kilo-pulses/second radar where the start

time, stop time, and five samples are quanrized would require approximately 100

bytes/pulse.

Maximum data rate 50 K x I00 = 5 MBps = 40 Mbps

5



Thiscould beservicedby ahigh speedLAN but would bebestservedbya high

speedpoint to point link.

CASE3

Theraw information provided by a Doppler radar can require an I/O capacity of up

to 40 MBps = 320 Mbps for the transfers out of the MIS processor.

This data rate could not be served by a present day LAN. A point to point

connection would be required.

Mississippi State's estimated data rates without RF/radar nodes compare

favorably with those presented in the Boeing study. It will therefore be assumed for

this study that a local area network that can service a 25 megabit load wiU be required

for future launch vehicles. This data rate severely limits the number of existing local

area networks that are applicable.

1.3.1.2 Ground Checkout

Ground checkout has been a driving force in data bus requirements for several of the

most recent vehicles such as the shuttle and OMV. The use of advanced sensor systems

with embedded self-test will reduce the data bus requirements for ground checkout. Howev-

er, the application of these systems and their interface with a smart ground checkout system

must be studied. This is an appropriate task for the MAST facility. A study of the proper

mix of embedded test and ground checkout could be undertaken using the various subsys-

tems tied to the MAST facility. Different mixes of embedded test and ground checkout could

be conveniently made so that performance data and requirements for these systems could be

obtained.

A problem added by the use of a central local area network that services many sub-

system networks is the inability to test the subsystem directly. This is a driver for self-test
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of subsystems.The local areanetwork of a subsystemmust also be tested and this can be

accomplished by a monitor node, such as a Lanalyzer, for the subsystem. Many commercial-

ly available local area network monitors and test programs are available. These programs

could be placed in one of the onboard computer systems that would have the responsibility

for testing the local area network. This system would be required to insure that each station

could access the communcations channel as well as receive messages from other stations.

An additional problem will be the testing of the protocol's error recovery systems.

The monitoring station should introduce faults into the system such as lost tokens for token

access systems or collisions for contention systems. These features may require that the

monitor/checkout terminal of the network have additional hardware to perform these tests.

1.3.1.3 Launch Vehicle Environment

The launch vehicle environment requires equipment able to withstand both high and

low temperatures, changes from atmospheric pressure to vacuum, vibration and the ability to

withstand high G forces. This will usually require the addition of hardware to most systems

so that they may operate reliably in this severe environment. The requirements for fault tol-

erance will also require modifications to most hardw_tre.

1.3.1.4 Evolution of Intelligent Sensor Technology and How it Affects

the Communications System

As the evolving technology of the smart _ensor and distributed computing fields is

applied to advanced launch systems a new analy,ds of data and command communications

within the launch vehicle will be required. In the past a central flight computer has taken

data from various sensors for pressure, temperature, flow rate, position and velocity and

transmitted commands to actuators for thrust vectonng and flow control. This communication

system has naturally taken the form of a star _L,'chitecture. With the addition of smart

sensors that will perform trend analysis and additional functions to off-load computing from

7



the main flight computer this architecture will not be required to change. However, the

addition of distributed processing and intelligent sensors that may act as bus masters will

require a change in the basic philosophy of the main flight computer serving as the sole bus

master.

Several steps will be required in the addition of this new technology to launch

vehicles. These steps fall into three general cases:

1) The fin'st case deals with the sensors and flight computers used in

today's launch vehicles. In this case sensors only provide data words to the

flight computer and the computer provides commands to the actuators. A

possible advantage of applying local area network technology to-this type

system is that, with a bus based LAN, configuration changes could be easily

accomplished. This could prove beneficial to a reusable system whose launch

configuration changes between uses.

2) The second case arises from the addition of smart sensors that off-load

some computing task from the main flight computer. This may be

accomplished by the sensor performing trend analysis, state of health self-

checks, and the self-recognition of proximity to or crossing of critical limits.

These tasks, which are presently performed by the flight computer, could be

accomplished by the addition of a microprocessor to the sensor system. This

has the benefit of off-loading computations from the main flight computer at the

disadvantage of increasing the amount of data that must be communicated

between the sensor and the main flight computer due to the addition of trend

information to the data.



3) The third case arises w l_en intelligent sensors and distributed

computing are applied to the launch vehicle. This will entail a major change in

the on-board avionics communications system. The use of distributed

processing may be accomplished in several ways. The first would be to have

sub-computers that simply take ta_,ks assigned to them by the main flight

computer and return their results tc:_ this computer or they may be assigned

responsibility for certain sensors and control tasks and only be required to

communicate with the main flight computer for unusual problems. In this case

the main flight computer would only serve as a flight status monitor until an

unusual problem occurred that would require its intervention. Distributed

computing could also be used in various subsystems such as an engine

subsystem controller. The subsyslem could be sent a message "to change

throttle settings and the processor within the subsystem would compute the

control settings and take control ot the actuators to accomplish the changes,

off-loading this task from the central flight controller. The use of these types

of distributed processing and intelligent sensors would reduce the amount of

communication that will be requirc:i in the system as compared to case two

but will also require a change from command/response to a distributed access

control for the communications system to obtain the benefits of intelligent

sensors and distributed processing.

1.3.2 Application of Local Area Network Communications Systems to an

Advanced Launch Vehicle

The communications system requirements of the evolving launch systems can be met

by the application of local area network technology. A local area network that provides reli-

able performance with guaranteed data delivery ;rod bounds on data latency can be used.

The advantages possible in this system would be: more timely access to time critical data
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than in a polling or command/responsesystemand more effective utilization of distributed

processing. Possibleproblemswould be the reduction in the transfer of critical information

due to the overloadingof the communicationspath by routine data in unusualconditions and

the loss of command/controlof the system by the main flight computer if anothersystem

takes control of the communicationssystemin a critical situation. Any local area network

appliedto launchvehiclesmustaddresstheseproblems.

1.3.3 Determination of a Suitable Protocol/Architecture/Hardware to

Implement the Local Area Network Communications System for an

Advanced Launch Vehicle

The determination of a suitable local area network for an advanced launch vehicle may
b

be broken into three interrelated tasks. These tasks are the determination of appropriate

rules of communication, the determination of an appropriate architecture and the

determination of the hardware needed to implement the protocol on the given architecture.

The task of determining appropriate rules of communications depends on the following:

The amount of traffic to be handled.

The differing levels of priority that stations or packets may have.

Requirements such as maximum data latency, guaranteed access time, etc...

The determination of an appropriate architecture requires knowledge of physical

layout of the stations to be placed on the network and reliability requirements for the

network.

The task of determining appropriate hardware is often the hardest task. Many

protocols can be designed that meet the communications requirements for a system but can

not be implemented. Another aspect of this problem is gambling on the development of

hardware for leading edge protocols in the development stage. For space applications it
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wouldbedesirableto havea systemthatis well prow_nwith a long servicerecord.

1.4 Significance

Tiffs study will provide a documentthat can be used in developmentof an avionics

communicationssystemfor future launchvehicles. Suitable local areanetworksfor evolving

advancedlaunch systemswill be determined. The goal of this study is to provide general

outlines for the application of local area networks to the three casespresentedin section

1.3.1.2. The actual designof thesesystemswill be dependenton project specific parameters

thatwill requireadditionalevaluation.
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2 Network Architectures

In communication networks, topology describes the method in which the nodes of the

network are physically interconnected, it is a function of the communication links and switch-

ing elements in the network. The path taken by tt:_e data going from one node to another in

the network is determined by its topology. In general, communication networks topologies

are of the following types :

2.1 Ring

The ring topology is illustrated in Figure 2.1. In this figure the boxes represent the

nodes of the communication network and the lines which connect the boxes are the links of

the network. If we def'me a communication network in which one node participates in all avail-

able links of the network as a centralized network, then it is obvious from Figui'e 2.1 ring

topology is a decentralized one, moreover, it is a closed loop. Since every node in a network

with this kind of topology has an unbuffered repeater and utilizes two links only, no routing

decision is required and data circulation is in one direction, i.e. either clockwise or counter-

clockwise. When a node needs to send information to another node in the network, it will

transmit the information in packets. Among other information, each packet contains the

address of the receiving node. The packets axe transmitted one at a time and each packet is

circulated bit by bit through the repeaters in the network. When the receiving node identi-

fies its address in a packet it copies the information into its buffer as the packet passes by.

One characteristic of the ring topology is the determination of which node can transmit at

any given time, this determination is achiew_d through access control mechanisms

(protocols). Such mechanisms are discussed in Part F'our of this report. [STAL84]

2.2 Bus

The bus topology is depicted in Figure 2.2. In this communication network topology

no routing decisions are required. All nodes are attached to a linear transmission medium
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(i.e. the bus)via suitablehardwareinterfacing. A messagetransmittedfrom any nodein the

network will flow in both directionson the bus. I'he designatednode identifies its address

and will receive the message. Since the message is transmitted through the bus and all the

nodes are attached directly to the bus, reception ,_f the message is accomplished by every

node in the network if needed. Another represemation for this topology is shown in the

same figure, it is clear that all the network's nodes share a common point of connection. In

bus topology only one node can transmit at any given time hence a control mechanism is

needed. Such mechanism is presented in part four of this report. Tree topology is a general-

ization of bus topology. [STAL84]

2.3 Star

Figure 2.3 shows a star topology for a communication network, it is a centralized net-

work. Usually the central node (CN) has complex switching capabilities, and part of its task

is the following : In the network, when node A wishes to communicate with node B it will

first ask for permission from the central node. It will supply to the central node, among other

information, node B's address. The central node executes the required steps to set the cir-

cuit, once the circuit is set the information between the two nodes is exchanged as if the two

nodes were connected via a dedicated point-to-point link. [STAL84]

2.4 Hybrid

We define a hybrid topology as a topology containing more than one type of the

topologies mentioned previously. Hybrid topology can be of two kinds:

Mesh Topology : Figure 2.4 shows an example of this kind of topology, if the dotted line is

removed from the mesh the resulting network will l_ave a ring topology. This type of network

is called a "multi-nodal", "distributed", or "fully interconnected "network also. In this topolo-

gy every node has a dedicated point-to-point link to every other node in the network. The

controlling mechanism which determines the manner in which any two nodes can communi-
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cate will be presentedin part four of this report. It is important to mention that for N nodes,

the mesh topology needsN(N-1) links and every node requires (N-l) input/output ports. In

generalthis is thecasewith everypoint-to-pointcom_nunicationlink.

Multi-m_h Topology : An example of this type of _:opology is illustrated in Figure 2.5. Some

of the nodes of this topology have the ability to interface with more than one type of topology,

this of course will introduce some complexity to their input/output ports, such nodes are

called Bridges and Gateways. The controlling m,_chanism of this type of topology is dis-

cussed in part four of this report. A brief description on Bridges and Gateways is presented

in the following section. [SHER85]

2.5 Bridges and Gateways

In a hybrid topology, the interconnection of sub-networks that exhibits"-the same

interface techniques and protocols for medium access ( i.e. homogeneous sub-networks) is

accomplished through Bridges, see Figure 2.5. The structure of a Bridge is shown in Figure

2.6. The Bridge receives a message from a node in sub-network A and buffers the informa-

tion while waiting for the opportunity to transmit the information to a node in sub-network B,

the bridge uses its packet buffer to perform this ta_k. In addition packet buffers help during

cross-bridge traffic peaks. This is a time during wifich the traffic offered by one sub-network

exceeds the available capacity of the other. The duty of the control filter in the bridge struc-

ture is to decide from which sub-network the bridg,_ should " pull off " and buffer a transmit-

ted message until it will have the opportunity to transmit it to the other sub-network. On

the other hand, if the sub-networks in a hybrid topology exhibits different interface tech-

niques and protocols for medium access a protocol convertor device is used, such device is

called a Gateway, see Figure 2.5. For example in packet switched interfaced systems a Net-

work Interface Unit (NIU) is considered as a gateway, this device performs the following

functions:
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a- Acceptdatafrom attacheddevice

b- Buffer thedatauntil mediumaccessis achieved

c- Transmitdatain addressedpackets

d- Scaneachpacketonmediumfor its own address

e- Readpacketinto buffer

f- Transmitdatato attacheddeviceat theproperdatarate

Thearchitectureof this deviceis shownin Figure2.7. [STAL84]

2.6 Recommended ALS Architecture

Many parameterswill affect the design and implementationof the ALS architecture.

Someof theseparametersare:

(a)- The degreeof advancementin the sensors( a sensoris assumedto be composedof

aremoteterminalanda sensingdevice) andactuatorsof thesystem.

(b)- The importanceof the sensorsand actuatorsservicesat any given time. The need-

ed information from a sensorand the function of an actuatorat a given time may rangefrom

unimportantup to extremelyimportant.

(c)- The physical spacingbetweena groupof sensorsand the importanceof the availabil-

ity of their information at a given node. Such spacingmay affect the homogeneityof the

arrival timeof the information.

(d)- Different stagesin the systemmay require different architectures. This is because

different stagesaredesignedto accomplishdifferent tasks.

(e)- Since the complete launchprocessis a multi-phaseprocess,it is far from simple.

Thiscouldjustify the implementationandutilization of ahybrid system.

(f)- It is extremelyimportant to have the completeinformation reaching a decisionmak-

ing node as soon as possible from a given sensor. Accordingly the "

the system needs to receive such decisions at the precise moment.

and routing is required.

action taking " part of

Hence optimal timing
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(g)- Physicalbreaksin the system's topology are of two kinds, anticipatedand acciden-

tal.

2.6.1 Justification by Pros and Cons

In light of what has been mentioned, different types of architectures may be consid-

ered for implementation in a future launch system. First, information on the general advan-

tages and disadvantages of some of the typical topologies is of benefit. Some of the most

important advantages in using the ring topology are the utilization of the point-to-point com-

munication link, and the regeneration of the message at every node which helps in minimizing

transmission error and maximizing the total distance covered by the network. In ring topolo-

gy token latency and repeater delays increase as the number of nodes increases. This

results in decreasing the efficiency of the communications system. Decreasing transmission

speed and/or average packet size will degrade this topology's performance. Selection of

transmission media affects ring topology characteristics, for example, when optical fiber links

are used between the repeaters, very high throughput is achieved. However, a break in one

link of the ring will result in a fatal crash.

One phenomena of ring topology is that when a message is injected in the ring it will

continue circulating until it is completely attenuated or until is removed. This can introduce

echoes in the network unless messages are at some point stripped from the ring.

A bus or Tree topology will allow multiple nodes to share the same path, however

only one node can transmit at any given time. In this kind of topology no switches or

repeaters are needed. A linear token passing multiplex data bus has been proposed [SAE

AS 4074.1 VERSION 4.0 JANUARY 25,1988 TASK GROUP COPY proposal]. This bus

topology is advertised as providing high reliability, high bandwidth, and low latency charac-

teristics.

A star topology is completely dependent on the central node's abilities and operation

levels. The required complexity in a reliable central node must be considered as a disadvan-
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tage for this kind of topology. Currently, this topology is used in launch vehicle local area

networks.

An implementedprotocolon a ring topologymay furnish and supportreliable connec-

tivity after a physicalbreakin thering. On the otherhanda physical break in a bus topology

may disablethebuscompletelyor partially. In the startopology a physical breakin a link will

only disablethe correspondingnode. Among the _:hreemajor topologies(i.e. bus,star, ring )

the bus topologyhasthegreatestflexibility of the removalor the addition of a nodewith min-

imum labor. Primarily threeconceivablecasesneedto beconsider.

2.6.1.1 Case 1

In the first case the majority of the ALS network nodes except the flight controller

(the flight controller is assumed to be composed oi' a computer and a command terminal) are

considered primitive. A star topology in which the flight controller is the central node will

give the flight controller an exclusive fight to monitor, dictate and prioritize any act of commu-

nication taking place in the network. In this case it is the duty of the flight controller to keep

an optimal process of communication with all pastes of interest at any given time. Above

that, it needs to take the responsibility of the house keeping process, such as the re-configu-

ration of the network system in case of a loss of a link or node. In general the flight con-

troller must be armed with very sophisticated switching, amplifying, and signal processing

circuitry. This of course will demand a very advanced flight controller. A decentralized net-

work topology on the other hand, will result in a poor communication environment since this

will deny the flight controller its role. Also, the technical status of the sensors and the actua-

tors in the system does not encourage the idea of utilizing a bus, tree or ring topology.

Hence, a communication/command/control domain with the flight controller being the only

intelligent node will perform at its best with a star topology. Present launch vehicles commu-

nication network use the MIL-STD-1553 bus system. In this system the flight controller

acts as a central node and it is the only node in the system which can initiate an act of com-
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municationwith anyothernodein thesystem.

In addition to the network suggestedaboveand present launch networks, a LAN sys-

tem with three MIL-STD-1553 buses all connected to the flight controller and each serving a

different stage of a three stage launch vehicle is a possibility. In this LAN system, communi-

cation between stages is assumed to be a rarely required communication.

2.6.1.2 Case 2

It is a known fact that the ALS is a multi-stage system. If the use of semi-skilled

sensors and actuators is to be considered then the ALS network may be partitioned in to

sub-networks. A possible system configuration under these circumstances is suggested in

Figure 2.8 where each sub-network utilizes a star topology, and each central node (CN) of

such sub-networks is interfaced to the system's backbone network via a bridge. The back-

bone network of the ALS is shown to be a bus. The flight controller is on the bus where it

performs its duties such as monitoring, sending commands, and receiving information. The

star topology keeps the flow of the information into and out from any stage of the ALS at its

optimum while the bus topology used for the backbone provides the flight controller with a

means to communicate with any node in the network at any given time. The number of the

stages is assumed to decrease in time, as at time to for example stage 0 may knowingly be

physically separated from the whole system and at time t 1 stage 1 may be separated and so

on. Taking into account what has been stated above and the topology suggested for this

case the flight controller's burden is smaller as compared with case one. This is because the

central nodes in each sub-network are assumed to have a degree of intelligence in addition

to what the corresponding nodes have, hence information and command manipulation will be

taken care of partially at the corresponding sub-networks without the intervention of the

flight controller, unless there is an emergency. It is possible to replace the backbone's bus

topology with a ring topology. If this is done, then the flight controUer will no longer have a

direct path of communication with any node in the network.
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2.6.1.3 Case 3

The ultimate advancement in sensor and actuator technology in the future will offer

the ALS a network composed of skilled devices. A completely decentralized communication

network topology may then be used. Such a topology is shown in Figure 2.9 where the LAN

in every stage in the system has a ring topology, the sub-networks are interfaced through

Bridges/Gateways and the flight controller's activity is diminished. Generally, in this case

the flight controller's duty is to monitor the whole system performance and conceivably per-

form system diagnostics. On the other hand each sub-network in the system will take the

responsibility of performing optimal command/communication/control among their nodes and

themselves. It is clear that the information is routed between all parties of the network, and

at the mean time the flight controller is no longer holding the privilege of decision taking nor

is it issuing all commands. Hence the communication network has to be a high "speed, high

bandwidth decentralized system. According to today's technology ring topology is in the

lead in high speed, high bandwidth traffic phenomena.

2.6.2 Conclusions

Since in case one the flight controller has full authority in the ALS communica-

tion/command/control environment, a centralized topology is recommended. A star topology

will be suitable for this case. On the other hand in case two and three the flight controller's

roll is gradually changing. It is changing in a way that it is not the only node with intelligence

capabilities. Therefore a decentralized topolog) is recommended for both case two and

three. Case two will utilize a hybrid topology in which the backbone part insures a solid

communication environment between the flight controller and the rest of the network. The

topology of this part is suggested to be a bus for reasons discussed in case two. Case

three's network system will have N ring topology sub-networks. The speed and ease of the

flow of the information in all parts of the system wiil be insured via this topology.
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3 Hardware

3.1 Transmission medium

3.1.1 Twisted pair

In the twisted pair medium conductivity is established through two wires of copper or

through the copper of steel coated copper. The two wires are twisted to minimize electro-

magnetic interference. Analog or digital signals c_n be transmitted through this medium and

amplifiers/repeaters are used for transmission continuation. Voice is commonly transmitted

through this medium, the twisted pair has a capaci:y of 24 voice channels using a bandwidth

of up to 268 KHz. When using this medium for digital transmission, modems ( modulators

/demodulators ) are used and the aggregate data rate is a function of the speed at which the

modems operates. This medium could be used in point-to-point and multi-point communica-

tion systems. Using twisted pair instead of coaxial cable transmission medium, for example,

will result in lowering the system's price at the cost of degrading the system's performance.

This medium is not immune to noise and shielding is required, doubling the shielding will

reduce the effect of the EMP (Electromagnetic Pulse) energy on its characteristics

[STAL85]. As an example, in today's technology a system of twisted pair LAN pushes data

at 4 Mbps for up to 8500 feet. This system is available from Corvus System, Inc.

3.1.2 Coaxial Cable

The coaxial medium is made of two concentric conductors, hence outer and inner con-

ductors. The outer conductor is a hollow cylinder which can be either solid or braided, and

the inner conductor can be either solid or stranded. Regularly spaced insulating rings or solid

dielectric material is used to hold the inner conductor in its position. The unique configuration

of this medium permits it to operate over a wide rage of frequencies, and it is usually identi-

fied by its characteristic impedance, for example 50 ohm cable or 75 ohm cable etc .... The 50

ohm coaxial cable is used almost exclusively for digital transmission, various modulation
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schemeshave been used for this type of transmission. These modulation schemes include

ASK (Amplitude Shift Keying), FSK (Frequency Shift Keying), and PSK (Phase Shift Key-

ing) techniques. The use of FDM (Frequency Division Multiplexing ) techniques will aUow

for the transmission of a large number of channels through this medium. Point-to point and

multi-point connection could be performed using coaxial cables. It's noise immunity depends

on the application and implementation adapted in the system design.[KRAU84 / SHER85]

3.1.3 Fiber Optics

The fiber optic medium is fabricated using two different compositions of glass. One of

the compositions has relatively high index of refraction and is used to form the core of the

fiber;, the core is surrounded by the second composition which has lower index of refraction in

relation to the fn'st composition; the second composition is called the cladding portion of the

fiber. The means by which the light is propagated through the optical fiber are:

-Total internal reflection.

-Internal refraction.

-Internal guiding.

Most of the light is propagated through the core of the fiber and the cladding is used

to reduce the scattering loss resulting from dielectric discontinuity at the core surface. The

cladding also adds mechanical strength to the fiber body; and it protects the core from the

absorbing surface contaminations with which it might come in contact. Extra protection is

accomplished through encapsulating the fiber in an elastic plastic buffer coating. Basically

there are three types of optical fiber:

(a)- Multi-mode step-index fiber

(b)- Multi-mode Graded-index fiber.

(c)- Single-mode step-index fiber.

The three types of optical fiber are illustrated in Table 3.1. In this table the propagation

mechanism, geometry, and the refractive index profile are shown [DALY84]. A data rate
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TABLE 3.1 COMPARISON BETWEEN FIBER OPTIC TYPES

Fiber

Type

Propagation

Mechanism

Geometry

Refractive
Index
Profile

Multimode

Step-Index Fiber

Reflection

0
i

!

Multimode
Grad¢_d-lndex Fiber _

Refraction

_ _ _L

/ v v _

Single-Mode
Step-Index Fiber

Guiding
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distance product for a system using an LED optical source and emitting in the 800-900 nano-

meter region is about 150 Mbps.Krn, while the same product may reach a value of 2500

Mbps.Km if a laser is used as a source, the value of this product will even get higher, up to

25 Gbps.Krn, if the laser is a InGaAsP laser. Optical fiber medium is immune to electromag-

netic and noise interferences[KEISER]. Table 3.2 shows a brief comparison between the

three major fiber optic types using bandwidth, splicing difficulty, and cost among other param-

eters.[AKER87]

3.1.4 Transmission Medium Utilization in LANs

In today's technology different networks use different transmission media. Among

other qualities, maximum distance coverage and price are two elements that need to be con-

sidered when designing a LAN. Table 3.3 illustrates this information for typical networks.

3.2 Connectors and Chips

3.2.1 Connectors

Connectors must be used only to insure the continuity of energy flow, they should

never be used to support any part of the system or the transmission media. It is significant

to understand that connectors are one source in the system from which energy leaks, hence

care must be taken in selecting the type of the connectors and accordingly their utilization.

Popular commercially available connectors axe:lAMP82]

-Electric Pin and Socket Connectors

-Electric Printed Circuit Board Connectors

-Electric Coaxial Connectors

-Electric Ribbon and Fiat Cable Connectors

-Electric Network / Premises Interconnections

-Optical Fiber Connections

-Optical and Electrical Directional Couplers
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TABLE 3.2 COMPARISON BETWEEN FIBER TYPES PARAMETERS

FIBER

PARAMETER

SINGLE-MODE
FIBER

(;RADED-INDEX
MULTIMOUDE

SOURCE

BANDWIDTH

SPLICING

EXAMPLE
OF
APPLICATION

COST

REQUIRES
LASER

VERY VERY
LARGE

> 3 GHz.Km

VERY
DIFFICULT

DUE TO
SMALL CORE

SUBMARINE
CABLE SYSTEM

LESS EXPENSIVE

tq]3ER

LASER / LED

VERY LARGE
200 MHz TO
3 GHz.Km

DIFFICULT BUT
DOABLE

TELEPHONE TRUNK
BETWEEN CENTRAL

OFFICES

MOST EXPENSIVE

STEP-INDEX
MULTIMODE
FIBER

LASER / LED

LARGE.
< 200 MHz.Km

DIFFICULT
BUT

DOABLE

DATA LINKS

LEAST
EXPENSIVE
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TABLE 3.3 NETWORK DISTANCES AND COST

CABLE

Fiber Optic

Coaxial Cable

Shielded
Twisted
Pair

Shielded
Twisted
Pair

Shielded
Twisted
Pair

Twinaxial

Unshielde
Twisted
Pair

NETWORK

Ethemet,
ISDN, FDDI,
Token Ring

Ethernet

Token Ring

Ethemet

ISDN

Ethemet

AVERAGE TRANSMISSION

DISTANCE

3,000 ft.

Bus Length of 600 ft.

300 ft., from work station to

wiring closet

600 ft., from work station to

wiring closet to work station

Usually greater than 300 ft.

300 ft.

COST

High

Moderate to

High

Moderate

Moderate

Moderate

Ethemet,

Token Ring

ISDN

100 ft.

Moderate

Low
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The optical connetionsand the optical and elecmcal directional couplers are disscussedin

theremainderof this section.

3.2.1.1 Optical Fiber Connections

Interconnection in optical fiber medium occurs at the optical source, at the photodetec-

tors, at intermediate points within a fiber cable where two fibers are joined, and at intermedi-

ate points in a link where two cables are connected. If the connection made is a permanent

bond then it is called a Splice, and ff it is a demeuntable joint then it is called a Connector.

The following is a brief description of both techniques.

Splicing Technique : Three splicing techniques are popular, they are:

1- Fusion Splices : The fusion splice is made by thermally bonding together prepared fiber

ends. In this method the ends of the fibers are first pre-aligned and butted together, this is

done either in a grooved fiber holder or under a microscope with micromanipulators. The butt

joint is then heated with an electric arc or a laser pulse so that the fiber ends are momentari-

ly melted and, hence, bonded together. This technique can produce very low splice losses

(e.g. 0.1 - 0.2 dB. [KEIS83 / JONE88]

2- V-groove Splice : In this technique the prepare_ fiber ends are first butted together in a V-

shaped groove. The ends are then bonded together with an adhesive or are held in place by

means of a cover plate. The V-shaped channel could be either a grooved silicon, plastic,

ceramic, or metal substrate. The splice loss in this method depends strongly on the fiber

size and the position of the core relative to the center of the fiber ( eccentricity ).[KEIS83 /

JONES8 / AMP82]

3- Elastic-tube Splice : In this type of splice a umque device that automatically performs lat-

eral, longitudinal, and angular alignment is used. It splices multimode fiber with losses in the

range 0.1 to 0.2 dB, but much less equipment and skill are needed in comparison to the

Fusion Splices. The mechanism of this technique is basically a tube made of an elastic mate-

rial, and a wide range of fiber diameters can be inserted into it. The fibers that need to be
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spliced do not have to be equal in diameter, which is a very good feature of this technique.

Popular Commercial Splices:

1- Square Tube : The square-tube splice is an alignment mechanism using a V-groove to

achieve two points of contact. The fibers are installed into a relatively large square tube

filled with epoxy. Maintaining a slight bend on the fibers as they are pushed into the tube

forces their ends into a V-groove formed by the comers of the tube. The fibers are butted

together and an index-matching epoxy eliminates the effects of Fresnel reflections. The

splice works well with fibers nearly the same diameter. [KEIS83 / JONE88]

2- Three-Rod : One example of a three-rod splice uses three "dumbbell" -shaped rods

enclosed in a collar. The collar is slightly raised in the center. The fibers fit easily between

the rods. When press rings are forced onto the raised portion of the collar the rods press

inward to hold the fibers. The splice is a primary alignment mechanism using the .rigid rods

as the fLrst layer. The resiliency of the collar and the inward bend of the rods permit compen-

sation for differences in fiber diameters. Here the splice loss is between 0.16 dB and 0.25

dB. [KEIS83 / JONE88 / AMP82]

Connecting, Technioue : A wide variety of optical fiber connectors based on different princi-

ples of operation are available. Some of the principal goals of a connector design are to have

the following characteristics [KEIS83] :

- Low coupling losses even after numerous connects and disconnects

- Interchangeability with connectors of the same type

- Ease of connection

- Simple and low-cost construction

- Reliability of connection

Low sensitivity to environmental conditions such as temperature, dust, moisture, and G-

forces.
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Popular Commercial Connectors:

- Watch jewel ferrule connectors

- Groove- or channel- based connectors

- Concentric sleeve connectors

- Molded connectors

- Expanded beam (lensed) connectors

3.2.1.2 Directional Coupler

Directional coupler for optical medium : To build an optical directional coupler two

dielectric waveguides axe brought into close proximity over a timed distance L. The distance

between them must be small enough so that each waveguide lies within the evanesent wave

(the wave of constant energy density propagating in one of two adjacent elech'omagnetic

media parallel to the interface) of the other. Norm_dly this type of directional coupler has two

input-ports and two output ports, in some applications, however, only two or three of the four

I/O ports are used. The two waveguides can be cylindrical optical fibers or slab waveguides.

Typical coupling coefficient (K) in an optical directional coupler is 700. Given the input power

to the directional coupler (Pi), the value of (K) is used to calculate the output power (Po) as:

Po = Pi sin2 ( K L 1 [YARI85]

Directional coupler for coaxial medium : A directional coupler is used in coaxial cables

to combine or divide RF energy provided that the corresponding cables maintain the same

value of the characteristic impedances. Coaxial directional coupler has three ports :

-An input port

-An output port

-A tap por_

The performance of a coaxial coupler is described by its insertion loss, tap loss, isola-

tion, anddirectivity [KRAU84]. Well designed coaxial directional couplers have a directivity
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of only 30 to 35dB [LIAO85]

3.2.2 Chipsets

3.2.2.1 The Supernet Family for FDDI [Advanced Micro Devices(AMD)]

This family is composed of five chips namely Am79C81, Am79C82, Am79C83,

Am7984, and Am7985. The interconnect block diagram of this family is shown in Figure 3.1,

the distinctive characteristics of this family of chips are :

a- Compliant with the proposed ANSI X3T9.5 ( Fiber Distributed Data Inter-

face, FDDI specification)

- 100 Mbps data rate

- Fiber optic transmission media

- Ring topology "

- Timed token passing protocol

b- CRC generator / checker

c- Diagnostics features

- Multiple loophack modes for run time diagnostics

- Accumulates network management status information

d- Supports Master and Slave system interfaces

e- Complete memory management

- Supports 256 Kbytes of local frame buffer memory

- Link list transmit frame structure

- Supports up to 200 Mbps dual port memory access

The block diagram of CMOS RAM Buffer Controller (RBC) Am79C81 chip is shown

in Figure 3.2, its distinctive characteristics are;

a- Total memory buffer management

-16 bit address bus supports 64 Kwords (32 bits wide ) with the

Am79C82 Data Path Controller (DPC)
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- Programmableregistersandpointers

- Memoryfull andemptynotification

DMA arbitration between the Data Path Controller (DPC), Node

Processor(NP), andHost

b- Supportstransmitlink list addressing

c- 12.5MHz byteclock

d- "FIZ, compatible I/O

e- Single +5 V power supply

f- 145 lead pin grid array package

The block diagram of CMOS Data Path Controller (DPC) Am79C82 chip is shown in

Figure 3.3, its distinctive characteristics are :

a- Preforms reception and transmissio_a of frames "

b- Byte (8 + 1 bits ) to word (32 + 4 bits) conversions

c- Reports error status

d- Performs parity check and generation

e- 12.5 MHz byte clock

f- 145 lead pin grid array package

g- Single +5 V power supply

The block diagram of Fiber Optic Ring Media Access Controller ( FORMAC )

Am79C83 chip is shown in Figure 3.4, its distinctive characteristics are :

a- Implements Media Access Control (MAC) layer protocol for the ANSI

X3T9.5 standard (Fiber Distributed Data Interface, FDDI )

b- Perform frame reception, transmission, repetition, and removal

c- Error detection capability

- Cyclic redundancy checking and generation

Note: To detect serious FDDI ring faults, the network nodes continuously transmit beacon

frames, yielding to upstream nodes. If there is a physical break in the FDDI ring, all nodes
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will receive a continuousstreamof beacon framesfrom the node immediately downstream

from the fault andring recoveryprocedureswould follow. [08/16/88TELEPHONE CONVER-

SATION WITH MS.AMY CHANG FROM AMD INC.].

- Tokenclaimingandbeaconmodes

d- DiagnosticsFeatures

- Four loopbackmodes

- Statusbit collection

e-Tokenmanagement

f- Supportsdataratesup to 100Mbps

g- Single+5 V powersupply

The block diagramof ENDEC Transmitter (ETX) Am7984 chip is shown in Figure

3.5, its distinctivecharacteristicsare:

a- Implements4B /5B encoding as specified by the ANSI X3T9.5 (Fiber Dis-

tributed Data Interface, FDDI ) standard

b- 100 Mbps, 125 Mbaud serial output

c- Byte clock and nibble clock output

d- Selectable loopback and repeat modes

e- Line state decoder

f- Repeat filter

g- Single + 5 V power supply

h- 84 pin PLCC and LCC packages

The block diagram of ENDEC Receiver (ERX) Am7985 chip is shown in Figure 3.6,

its distinctive characteristics are :

a- implements 4B / 5B decoding as required by the ANSI X3T9.6 (Fiber Dis-

tributed Data Interface, FDDI) standard

b- 100 Mbps, 125 Mbaud serial input

c- Clock recovery
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d- Decodesdata with up to 3.0 nanose_-onds jitter

e- Selectable loopback mode

f- Internal elasticity buffer to compensate for clock mismatch

g- Single +5 V power supply

h- 44 pin PLCC and LCC packages

3.2.2.2 Local Network Controller (LENT) R68802 chip [Rockwell]

The R68802 Local Network Controller implements the IEEE 802.3 CSMA / CD stan-

dard. It supports Ethemet (10BASE5), Cheapernet (10BASE2), and StarLAN (1BASE5)

implementations of this standard. The basic function of the LNET is to execute the CSMA /

CD algorithm, perform parallel-to-serial and serial-to-parallel conversions for data streams

up to 10 Mbps, and assemble and disassemble the packet format. In addition, the I:NET pro-

vides an 8-bit or 16-bit processor interface, the required DMA interfaces, and the proper

interface to the Manchester Code Converter (MCC) used to connect the LNET to an IEEE

802.3 defined Media Attachment Unit (MAId). The block diagram of this controller is shown

in Figure 3.7, and its main features are •

a- Meets the IEEE 802.3 specifications for local networks (e.g., Ethemet,

Cheapernet and StarLAN)

b- Serial data rates as high as 10 Mbp_;

c- Compatible with a variety of 8- or ] 6- bit processors and DMA controllers

d- Interfaces to a variety of manchester code converters

e- Programmable interframe wait times for smaller topologies and lower data

rates

f- CSMA / CD algorithm :

- Wait before transmit

- Jam on collision

- Binary exponential backoff
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g- Programmable 2- or 6- byte address recognition

h- Supports loopback self-test

i- Extensive network management capabilities

j- Programmable disable on reception

k- Programmable collision handing rrmimizing CPU intervention

l- 32 bit CRC generation and reception

m- Broadband applications

n- 32 byte FIFO on both transmitter and receiver

o- "I'I'L compatible IIO

p- 40 pin DIP

q- Single +5 V power supply

3.2.2.3 Ethernet Serial Interface 82501 [Intel]

The distinctive features of this chip are the folowing;

a- It is compatible with IEEE 802.3 / Ethernet and Cheapernet Specifications.

b- 10 Mbs operation.

c- Replaces 8 to 12 MSI components

d- Manchester Encoding / Decoding and Receive Clock Recovery.

e- 10 MHz Transmit Clock Generator.

f- Driving / Receiving IEEE 802.3 T1ansceiver Cable.

g- Fail-Safe Watchdog Timer Circuit to prevent continuous Transmissions.

h- Diagnostic Loopback for Fault De_:ection and Isolation

i- Directly Interfaces to the Intel's 82586 LAN coprocessor.

3.2.2.4 Ethernet Transceiver 82C502 [Intel]

The distinctive features of this chip are the following;

a- Conforms to IEEE 802.3, Ethernet Rev.2, and Cheapernet standard as
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- Anti- jabberfunction

- Receiverbasedcollisiondetection.

- SignalQuality Error ( heartbeat) test.

- Supportsredundantjabbertimer.

b- Requires minimum boardspace

- On chip voltage refrence.

- 16 pin DIP.

c- No external adjustments required.

d- Reliable CHMOS technology.

3.2.2.5 Local Area Network Coprocessor 82586 [Intel]

The distinctive features of this chip are the following

a- Performs Complete CSMA / CD Data Link Functions without CPU Over-

head

- High level command interface

b- Supports Established and Emerging LAN Standareds

- IEEE 802.3 / Ethernet

- IEEE 802.3 / Cheapernet

- IBM PC Network ( 2 Mbps Broadband )

- 1 Mbps Networks

d- On Chip Memory Management

- Automatic buffer changing saves memory

- Reclaim of buffers after receipt of bad frames

- Save bad frames

e- Interfaces to 8 - bit and 16 - bit Microprocessors

f- Supports Minimum Component Systems

- Shared bus configuration
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d- High level command inn'face offloads the CPU

e= Efficient memory use via Multiple Buffer Reception

f- User Configurable

- Up to 2 Mbps Bit rates with on chip Encoder / Decoder ( High Inte-

gration Mode )

- Up to 5 Mbps with External Encoder / Decoder ( High Speed Mode )

g- No TrL Glue required with iAPX 186 and 188 microprocessors

h- Network Management and Diagnostics

- Short or Open Circuit localization

- Station Diagnostics ( External loopback )

- Self test Diagnostics, Internal loopback, User readable register

3.3 Other Considerations

Depending on the transnmsion medium and topology the implementation of other

hardware items needs to be considered thorougldy. Such items are discussed below.

3.3.1 Repeaters

The repeater is used to boost the energy level at different locations in the ut/lized net-

work. It is a device that amplifies and repeats its input, the repeater has the ability to "clean"

its input before sending it out to the rest of the system. If amplification is performed in the

repeater, then one amplifier is needed for each direction of signal propagation in a bidirection-

al system (total of two amplifiers). Only one amplifier is needed for unidirectional system.

Unfortunately, in addition to the desired signal, the repeater amplifies and re-transmits noise

and collisions. A failure in a certain repeater will result in a "break" in the topology u_li_ng

it, such a break could be fatal if the topology in use was a ring topology, for example.

5O



3.3.2 Fiber Optic Couplers

An optical coupler is used in a different way. It may be used to combine light from

two fibers into one, or split light from one fiber intc_ two. Also couplers may be used to com-

bine different wavelengths for the purpose of trans_Lxission over a single fiber (multiplexing)

or to separate wavelengths transmitted over a single fiber into individual fibers

(demultiplexing). Coupling efficiency is one parameter that must be considered when dealing

with coupling. Two types of couplers are of interest here:

Fiber optic Star coupler: A star coupler is a passive mixing element, the optical power

from the input ports are mixed together and then divided equally among the output ports.

Star couplers are of two kinds, see Figure 3.8:

(i) Reflection.

(ii) Transmission.

A portion of the light which enters the refie:tion star coupler is injected back into the

input fiber, therefore for a given number of input _md output ports the transmission star cou-

pler is twice as efficient as the reflection star coupkr. The reflection star coupler is more ver-

satile, however, because the relative number of the input and output ports may be selected or

varied after the device has been constructed. On the other hand transmission star coupler

will have the number of the input and output ports fixed by initial design and fabrication.

Fiber optic T-coupler: A T-coupler could be passive or active . An active T- coupler

shown in Figure 3.9. In this type of coupler the ph_todiode receiver converts the optical ener-

gy, flowing in the data bus, into an electric signal and the processing element can remove or

copy part of the electric signal while the remainder of the energy is forwarded to the optical

transmitter where the electric signal is reconverte_t to optical energy and re-transmitted on

the optical bus.

The processing element has the ability of adding energy to the main signal also. This

kind of coupler can easily be constructed by using photodiodes and light sources. A passive

T- coupler is shown in Figure 3.10. This kind of _:oupler is used to remove a portion of the
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optical energy from the optical fiber bus, or on the ether hand to inject additional light energy

onto the optical bus. This process will affect the p_:_wer budget of the network. Due to this

fact the number of terminals between taps is limited to a small number ( e.g. less than or

* equal to ten terminals). [ KEIS83 / YARI85]

3.4 Recommendations

Analog optical fiber systems are generally u_ed for short unrepeated video links but

most optical fiber applications are in digital transmission with simple on-off modulation. The

distamce between repeaters is based on the wawqength being used For example, as

shown in Figure 3.11, the maximum distance between repeaters is limited by the signal

attenuation at low data rates and by the dispersion at high data rates[JONE88]. The basic

attenuation mechanisms in a fiber are absorption, scmering, and radiation losses oi: the opti-

cal energy. On the other hand dispersion, which is the spreading in a pulse as a function of

wavelength and it is measured in nanosecond/Krn/nanometer. In present technology losses

from tapping a fiber optic medium will severely limit the number of nodes a system can utilize

and accommodate. However, methods of extracting energy from an optical fiber do not

always cause such limitations, for example the met:lod suggested by Shelby, Levenson, and

Perlmutter of IBM [SPEC88] which is shown in FLgure 3.12. In this technique, a krypton-

ion laser directs light at two red wavelengths, 647 and 676 nanometers down the same opti-

cal medium. When light is intense the silica fiber behaves in a non-linear fashion and its

index of refraction varies with the amplitude of the l_ght. This variation modifies the phase of

a probe beam passing through the fiber medium, thas the amplitude fluctuations due to both

the signal and noise on the signal beam modulate the phase of the probe beam and vice ver-

sa. By measuring the phase fluctuations of the proige beam with a phase shifting cavity the

amplitude of the signal beam can be deduced to an accuracy better than that allowed by con-

ventional methods. Present fiber taps are more difficult to make and are more expensive

than taps for coaxial cables. This is a technologicat problem which could possibly be over-
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come. The availability of high data rates and high bandwidth in fiber optic medium in compari-

son to that of the coaxial medium makes the medium attractive for many applications, see

Table 3.4. In this table a comparison is made between different networks taking in to consid-

eration the data rate and the medium, indeed many standard LANs have implemented and

utilized optical fiber medium, because this medium is superior in its data rate and its EMP

and noise immunity. Carefully taking the state-of-the-art in to consideration, it is possible

to reach a decision to implement and utilize optical fibers in this part of the system topology.

This is because the number of immediate nodes interfaced with the backbone is limited, and

every point-to-point link in the system topology can be of optical fiber. In general for bidirec-

tional networks or sub-networks two links of fiber are needed and one link of fiber is needed

for unidirectional networks or sub-networks. Optical fibers support a large bandwidth-dis-

tance product, they occupy smaller physical space as compared with other media=. Near a

wavelength of 1.55 micrometer optical fiber suffers from a 0.2 dB/Km loss. On the other hand

coaxial cable medium is a versatile transmission medium. Digital and analog signaling tech-

niques are possible in this medium and the maximum rate of data transmission in this medi-

um is stated in the literature as being 50 Mbps. The maximum range covered using this

medium is stated to be 10's of Km, while the practical number of nodes this medium can

accommodate is stated to be in the 1000's when using a 75 ohm coaxial cable and digital sig-

naling or analog signaling with FDM. [ DALY84 / KEIS83 / GEOR82 / AMP82 ].

3.4.1 Justification by Pros and Cons

In Sections 2.6.1.1, 2.6.1.2, and 2.6.1.3 three different topologies were suggested for

three cases, according to these topologies the corresponding transmission medium should be

selected. If the suggested topology was a bus topology, then both twisted pair wire and

coaxial cables are appropriate as a transmission medium. Optical fiber medium can be

selected for bus topology if it is cost effective. Twisted pair wire medium, baseband coaxial

cable medium, and optical fiber medium are suitable for ring or star topologies. The high data
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TABLE 3.4 COMPARISON BETWEEN POPULAR LOCAL AREA NETWORKS

NETWORK DATA RATE CABLING

ASCII 19.2 Kbps Twisted Pair

IBM 5251 1.0 Mbps Twin Ax.

PC NETWORK 2.0 Mbps 75 ohm Coax

IBM 3278/9 2.35 Mbps 92 ohm Coax

TOKEN RING 4.0 Mbps Dual Twisted Pair Shielded
Data Cable

IEEE 802.4 MAP ( G M) 5/10 Mbps 75 ohm Coax or Fiber Optic

IEEE 802.3 ETHERNET 10 Mbps 50 ohm Coax

ADVANCED TOKEN

RING 16 Mbps Fiber Optic

IEEE 802.6 50 Mbps Fiber Optic

ANSI FDDI 100 Mbps Fiber Optic

59



rate that a coaxial cableor a fiber optic mediumcan handlemay overwhelm the centralnode

switching capabilities in a star topologyusing either coaxial cable or optical fiber as a trans-

missionmedium.

3.4.2 Conclusions

In order to decide which type of hardwareto use many factors must be considered.

Mainly the type of topology used,accesstype, datarate, maximum numberof nodes,and the

environmentin which the hardwarewill be utilized are the main factors. Fiber optics sup-

ports the highestdata rate and bandwidthas well as havingexcellent EMP and noise immu-

nity and space/weightsaving characteristics. Most of the commercially available optical

cablesare made to withstand severeenvironments. For instance,Young's modulusof fused

silica glassand jacket material which are usedto manufactureoptical fiber cablesis 65 Gpa

and 20 - 500 Mpa respectively(Steel's Young modulus is 2x104 MPa). In addition, at Bell

laboratories,current researchis going on to develop photonic switches which manipulates

photonsinsteadof electrons. Systemsusingphotonicswitchesand optical fiber will result in

Gbit systems in near future [COM87 / AT&T lab. Telepone Conversation 06/19/88].

One advantage gained from using coaxial cable instead of a twisted pair wire as a

transmission medium is the outstanding bound on the maximum number of nodes that this

medium can support. Coaxial cable can be utilized for baseband and broadband signaling,

also taping energy from this medium does not generate hardware complexity as the case is

for optical fiber medium. Twisted pair medium supports lower data rate and it's immunity to

EMP and noise is weaker in comparison to both optical fiber and coaxial cable. Based on the

chosen medium and corresponding protocol a set of chips must be chosen. This chip set must

support the desired protocol for the selected medium.
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Chapter 4 Protocols

4.1 Tutorial

"Protocol" is a term used for the set of ru,es and procedures governing communica-

tions in a network. While "protocol" can refer to the communications between two ISO lay-

ers, for this report, the term will be used primarily in regard to communications between two

terminals, that is, communications taking place from the OSI network lay downward. Table

4.1.1 lz5] explains the OSI layers.

Although topologies for which each type of protocol is particularly suited may be giv-

en, this is not meant to imply it is used exclusively Olt those topologies.

4.1.1 Command/Response Protocols

As the name implies, in networks using a c_._mmand/response protocol, terminals com-

municate only when they are "commanded" to by a controller.

Command/response protocols are particulariy well suited to star topologies, although

they often used with bus configurations, and even in some ring networks. An example of a

command response protocol is MIL-STD-1553B, a protocol developed for the military.

4.1.2 Contention Protocols

In a contention protocol, terminals operat_: asynchronously, transmitting whenever

they are ready. If one or more terminals begin transmission when another is using the trans-

mission medium, a "contention" will occur, and all terminals involved will be unsuccessful in

their transmissions.

Most contention protocols employ CSMA,'CD (Cartier Sense Multiple Access with

Collision Detection). "CSMA" implies that each terminal monitors the transmission medium

and only tries to transmit when the medium is clea _. Contention occurs only when one termi-

nal initiates transmission, and before it transmission can propagate down the medium to be

detected, one or more additional terminals begin transmitting. "CD" implies that the termi-
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Application

Presentation

Session

Table 4.1.1 The OSI Layer Network Model [STALL85]

Description

Provides access to the OSI environment for users and also pro-

vides distributed information services

Provides independence to the application processes from differ-

ences in data representation (syntax)

Provides the control structure for communication between appli-

cations; establishes, manages, and terminates connections

(sessions) between cooperating applications

Transport

Network

Data Link

Physical

Provides reliable, transparent transfer of data between end

points; provides end-to-end error recovery and flow control

Provides upper layers with independence from the data trans-

mission and switching technologies used to connect sys-

tems; responsible for establishing, maintaining and terminat-

ing connections

Provides for the reliable transfer of information across the physi-

cal link; sends blocks of data with the necessary synchro-

nization, error control and flow control.

Concerned with transmission of unstructured bit stream over

physical medium; deals with the mechanical, electrical, func-

tional, and procedural characteristics to access the physical

medium
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nals detect the collision. Most CSMA/CD protocols require that, on detection of a collision,

the terminals involved must wait a (usually random) time period before retransmitting.

Contention protocols are generally used for bus topologies. Some star networks also

use contention. ALOHA and Ethernet are examples of contention protocols.

4.1.3 Time Division Multiplex Protocols

In time division multiplex protocols, each terminal is scheduled a time period when it

can use the transmission medium, and it will transmit its data only then.

The most common type of time division multiplex protocol is the slotted ring. Used

(obviously) on ring topologies, in slotted ring, one or more "slots" or "frames" travel about

the ring, preceded by a header to indicate their passing. Each terminal is allotted a certain

amount of time in the frame. When a frame is pa:;sing through a terminal, it reads any data

addressed to it, and puts any data it must send into the frame.

Most time division multiplexing protocols are referred to as "virtual" or "implicit"

token-passing, and so for the remainder of this report, time division multiplexing protocols

will be considered a class of token-passing protocols.

4.1.4 Token Passing Protocols

In this type of protocol, use of the transmission medium is granted by possession of a

"token". The token is usually a bit pattern (such as a long string of ones) rarely occurring in

data. If a terminal possesses the token, when it h_s data to send, it removes the token from

the network, and begins transmitting. When the terminal is finished transmitting, or when it

receives an acknowledgment that its data was received at the proper address (depending on

the particular token passing protocol), it places the token back onto the network.

In some token-passing networks, the token ts not passed by means of a control mes-

sage, but rather a set of conditions of the network :_nd various internal timers. Each terminal

monitors the network and its timers, and when the proper set of conditions arise, a terminal
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"knows" that it is in possession of the token. This is known as "implicit" or "virtual" token

passing.

Token passing is used almost exclusively on ring topologies, with one or more tokens

traveling around the ring, being passed from terminal to terminal. Some busses also use

token passing, where the token is placed on the bus to be removed by a terminal ready to

transmit. ProNet and FDDI are examples of a token passing protocols.

4.1.5 Hybrid Protocols

In order to take advantage of the features of two or more of the basic protocols

described above, hybrid protocols were developed. For example, in a command/response

protocol the controller may grant permission to transmit by use of a token, or a network may

have a controller to decide which terminal gets to transmit in case of a contention.

In simulation and in practice, some of the more promising hybrids have been con-

tention/token passing protocols. A hybrid of token passing and contention protocols was

simulated by Gopal and Wong at the University of Waterloo. [GOPA84] In their hybrid, a

token is passed logically from terminal to terminal. The token does not grant control of the

transmission media, however. Terminals use a CSMA/CD type protocol, and the token

comes into play only in case of a contention, in which case, if one of the terminals involved in

the collision possesses the token, it can retransmit immediately while the others have to

wait.

L-Expressnet is a contention/token-passing protocol that is commercially available.

L-Expressnet has a time known as the "scheduling period" in which when in possession of

an implicitly passed token, a terminal may transmit, guaranteed of no collision. The schedul-

ing period is then followed by a "contention period" in which any terminal may transhait at

risk of collision. Hyperchannel is another example of a hybrid protocol.

64



4.2 Command/Response Protocols

In this section, we will discuss the MIL-STD-1553B and MIL-STD-1773 command

response protocols. Both were designed for use on bus topologies, although the MIL-STD-

1773 is also particularly well suited for a star topology,.

4.2.1 MIL-STD-1553B

The multiplex data bus system functions asynchronously in a command/response

mode, and transmission occurs in a half-duplex manner, that is, data may travel in either

direction on the bus, but not in both directions at 1:he same time. A terminal called the bus

controller controls all information transfer on the bu;, and is the only terminal which may initi-

ate a transmission. The information flow on the data bus is comprised of messages which

are in turn, formed by three types of words: command, data, and status.

4.2.1.1 MIL-STD-1553B Word Types

4.2.1.1.1 The Command Word

The Command word is comprised of a sync waveform, a remote terminal address field,

a transmit/receive (T/R) bit, a subaddress/mode field, a word count/mode code field, and a

parity (P) bit, as shown in Figure 4.2.1. The command sync waveform is an invalid Manch-

ester waveform at least three bit times wide. The _ync waveform is positive in the first half

of the field, and then negative for the rest of the field, as shown in Figure 4.2.1.

The next five bits of the command word after the sync waveform are the remote termi-

nal (RT) address. Each RT has a unique address, but all RTs possessing the broadcast

option may also be addressed by placing 31 (11111 binary) in the address field. Each remote

terminal is responsible to respond when its unique address is transmitted as part of a com-

mand word on the data bus by the bus controller. Systems using the broadcast option may

not use 31 as the unique address of a remote terminal

After the terminal address comes the transnLit/receive, or T/R bit, which indicates the
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COMMAND WORD

REMOTE TERMINAL

ADDRESS 5

T/R SUBADDRESS/MODE DATA WORD COUNT P

1 5 MODE CODE 5 1

DATA WORD

DATA 16

STATUS WORD

REMOTE TERMINAL
ADDRESS 5 RESERVED3

ME: MESSAGE ERROR BC: BROADCAST COMMAND RECEIVED
I: INSTRUMENTATION BU: BUSY

SR: SERVICE REQUEST SF: SUBSYSTEM FLAG

DB: DYNAMIC BUS CONTROL
ACCEPTANCE
TF: TERMINAL FLAG

FIGURE 4.2.1 MIL-STD-1553B WORD FORMAT
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action required of the RT. A logic high (1) instructs the RT is to receive, and a logic low (0)

instructs the terminal to transmit.

The next five bits after the T/R indicate aJa RT subaddress or use of optional mode

control. The subaddress/mode control values of 03000 and 11111 are reserved for optional

mode control. The mode code control is used only to communicate with the multiplex bus

related hardware and to assist in the managemen: of information flow. It is not used to

extract or feed data to a functional control subsystem. Optional subaddress/mode code of

00000 and 11111 imply that the contents of the w(,rd count field are to be decoded as a five

bit mode command.

The next five bits following the subaddress/node control are used to specify the num-

ber of data words to be either sent or received by tl_e RT or the optional mode code as speci-

fied in the previous paragraph. A maximum of 32 data words may be transmitted or received

in any one message block. The field contains the binary expression of the number of data

words to be transmitted, unless that number is 32, in which case the field contains all zeroes.

The last bit is the parity check bit for the preceding 16 bits. Odd parity is used.

4.2.1.1.2 The Status Word

A status word is comprised of a sync waveform, an RT address, a message error bit,

and instrumentation bit, a service request bit, three reserved bits, a broadcast command

received bit, a busy bit, a subsystem flag bit, a d_rnamic bus control bit, a terminal flag bit,

and a parity bit as shown in Figure 4.2.1.

The status word sync waveform is the saree as the command word sync. The next

five bits contain the address of the terminal transmitting the status word.

The ninth status word bit is used to indicate that one or more of the data words asso-

ciated with the preceding receive command word from the bus controller has failed to pass

the RT's validity test. Logic one indicates an error, a_ad logic zero indicates a valid message.

The tenth status word bit is the instrumen:ation bit, and is always logic 0. This bit
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distinguishesthestatusword from acommandword,whosetenthbit is alwayslogic 1.

The eleventhstatusword bit is the servicerequestbit, and its use is optional. When

used,this bit indicates the needfor the buscontroller to take specific pre-definedactionsrel-

ative to either the RT or associatedsubsystem. If one or more subsystemsinterfacedto a

single RT requiresservice, the servicerequestbit is set to logic 1, and a separatedataword

is neededto identify the specific requestingsubsystem. The service requestbit is intended

to be usedonly to trigger data transferoperationswhich take placeon an exceptional,rather

than periodic basis. Logic 0 indicatesno needfor service. If this function is not used,the

eleventhbit is setto 0.

Bits twelvethroughfourteenarenotcurrentlyused,andaresetto zero.

The fifteenth status word bit is used to indicate whether or not the precedingvalid

commandword was a broadcastcommand. If thecommandword was a broadcastcommand,

this bit is set to 1, and if not, it is set to 0. If the broadcastoption is not used,'this bit is

alwayssetto 0.

The sixteenth bit is the busy bit, and its use is optional. When used, this bit indi-

catesthat the RT or subsytemis unable to move data to or from the subsystemin compli-

ance with the buscontroller's command. A logic one indicatesa busy condition and a logic

zero indicatesreadiness. If the busy bit is set in responseto a transmit command,the RT

transmitsits statusword only. If this functionis not implementedthe bit is setto logic zero.

The seventeenthstatusword bit is the subsystemflag bit, and its use is also option-

al. When used, this bit flags a subsystemfault condition and alerts the bus controller to

potentially invalid data. If one or more subsystemsinterfacedto a single RT detecta fault

condition the subsystemflag bit is set to a logical 1 and a separatedata word is neededto

identify the specific reporting subsystem. If all subsystemsare healthy, or this function is

notbeingimplemented,thisbit is setto 0.

The last bit of the statusword is usedas a parity check bit for the precedingsixteen

bits. Oddparity is used.
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4.2.1.1.3 The Data Word

A data word is comprised of a sync wavefol-m, data bits, and a parity bit as shown in

Figure 4.2.1. The data sync waveform is the inverse of the command and status words, i.e.,

where they are positive, it is negative and where they are negative, it is positive. Note that

if the bits preceding and following the sync are logic zero and logic one respectively, then the

apparent width of the sync waveform will be increased to four bit times.

The sixteen bits following the sync are used for data transmission. The last bit in the

data word is used for parity check over the preceding sixteen bits. Odd parity is used.

Data words are used to transmit information, control, and state data. They are distin-

guished from command and status words by the inver_:ed three-bit sync pattern.

4.2.1.2 Message Transfers

The messages transmitted on the data bus are in the formats of Figures 4.2.2 and

4.2.3., in Manchester code. The bus controller provides an intermessage gap from 4.0 to 12.0

ptseconds between messages. This time period, shown as T on Figure 4.2.4, is measured

from the mid-bit zero-crossing of the last bit of the preceding message to the zero-crossing

of the next command word sync. A remote terminai must respond to a valid command within

this time period. Different message formats transmitted on the bus are explained below.

4.2.1.2.1 Bus Controller to RT Transfers

For transfers between the bus controller to a remote terminal, the bus controller

issues a receive command followed by the specified number of data words. The command

and data words are transmitted contiguously, that i:_, with no gaps between the words. The

RT, after validating the message, transmits a status word back to the controller.

4.2.1.2.2 RT to Bus Controller Transfers

For remote terminal to bus controller trans_:ers, the bus controller issues a transmit
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Bus Controller to
Remote Terminal

[ Command Word [ DataWord

Source: Bus Controller

Data Word Status Response
[]

Source: Single Receiver

Remote Terminal
to Bus Controller

CommandWord ] [ StatusResponse [ ...DataWords...

Source: Bus Controller Source: Single Receiver

I Dam Word ] []

Remote Terminal to
Remote Terminal

Command Word ] Command Word
1

Source: Bus Controller

Status Response [ []
Source: Receiver A

[ Status Response [

Source: Receiver B

Data Word
Data Word [

[] End of Message Delay or Gap
Response Time Delay or Gap

FIGURE 4.2.2 MIL-STD-1553 RECEIVER DATA MESSAGE FORMAT
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BUS CONTROLLERTO REMOTE TERMINALS

SOURCE:BUS CONTROLLER
ADDRESS: 11111
SUBADDRESS:UNIQUE = 11111OR 00000
WORD COUNT: 1-32
T/R: RECEIVE

DATAWORD DATAWORD []

REMOTE TERMINAL TO REMOTE TERMINAIS

I [ICOMMAND WORD COMMAND WORD RESPONSE

SOURCE: BUS CONTROLLER _',,, SOURCE: RECEIVER A

ADDRESS: 11111

SUBADDRESS: UNIQUE = 11111 OR 00000 _\
WORD COUNT: 1-32

T/R: RECEIVE

DATA WORD

SOURCE: BUS CONTROLLER

ADDRESS: UNIQUE A
SUBADDRESS: UNIQUE = 11111 OR 00000
WORD COUNT: 1-32

T/R: TRANSMIT

I"1END O?" MESSAGE DELAY OR GAP
RESPONSE TIME DELAY OR GAP

FIGURE 4.2.3 MIL-STD-1553B MULTIPLE
RECEIVER DATA MESSAGE FORMAT
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command to the RT, which after validating the coramand word, transmits a status word back

to the bus controller, followed by the specified number of data words. The status and data

words are also transmitted contiguously.

4.2.1.2.3 RT to RT Transfers

For remote terminal to remote terminal d:tta transfers, the bus controller issues a

receive command to RT A, followed contiguously by a transmit command to RT B. RT B,

after verifying the command word, transmits a statas word followed by the specified number

of data words with no gaps in between. After receiving the data from RT B, RT A transmits

a status word within a specified time period.

4.2.1.2.4 Bus Controller Broadcasts

When the bus controller must "broadcast" a message to more than one remote termi-

nal, it issues a receive command word with 11111 in the RT address field followed by the

specified number of data words. The command and data words are transmitted contiguously.

The RTs with the broadcast option, after validating the message from the bus controller, set

the broadcast command received bit in the status word, but do not transmit the status word.

4.2.1.2.5 RT Broadcasts

When a remote terminal has a message to broadcast to other remote terminals, the

bus controller issues a receive command word with 11111 in the RT address field followed by

a transmit command to RT A using the RT's ad&'ess. RT A then specifies the number of

data words. The status and data words are transmitted with no gap. Except for RT A, all

terminals with a broadcast option set the broadca,,t received bit in the status word, but do

not transmit the status word.
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4.2.2 MIL-STD-1773

MIL-STD-1773 is a fiber optic version of MIL-STD-1553B. MIL-STD-1773 is

designed so that, if implemented in systems using MIL-STD-1553B, no major modifications

of the users will be required. The timing as well as the frame and word formats are the same

as described above for MIL-STD-1553B.

Because of the simplex nature of optical fiber (as opposed to the duplex nature of

twisted pair), it is necessary for there to be two seperate fibers, one for each direction, as

opposed to the single twisted pair cable of MIL-STD-1553B. Because fiber is so much

lighter, as well as offering other advantages as described above, this is not a problem, and in

fact offers alternative architectures to the simple star or bus used by MIL-STD-1553B, as

shown in Figures 4.2.5 and 4.2.6. [RELI83]

4.3 Contention Protocols

In this section, we will discuss Ethernet, the most prevalently used contention proto-

col. The Ethernet original baseband version was designed, developed, and patented by

Xerox and was publicly announced in 1979. Since then, a cooperative effort by Digital Equip-

ment Corporation, Intel, and Xerox has produced an updated Ethernet which is considered

the standard for cable-based LANs because it is very close to the IEEE 802 CSMA/CD

standard. The Carrier Sense Multiple Access with Collision Detection (CSMA/CD control

technique) is the more publicized method for bus/tree topologies and is compatible with the

IEEE 802 standard.

The Ethernet is basically a multi-access, packet-switched communications channel

which is managed by the control technique CSMA/CD for carrying digital data among locally

distributed computing systems. A primary goal of the Ethernet specification is compatibility.

Ethernet was in fact the first to accomplish this by allowing devices from different manufac-

turers to communicate directly with one another.

Using the CSMA/CD control technique, each station attached to the bus must con__.=
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tend with other stations to access the bus. There is no central controller which allocates

access to the channel. Each station must listen, i.t_., use carrier sense to detect whether the

bus is free. A station must wait or defer its transmission until the bus is quiet if another sta-

tion is transmitting. After gaining access to the bus, the transmitting station continues to

monitor the medium to detect colliding transmissiotLs on the bus. This is called "listen while

talk" and refers to collision detection.

Each station on the common channel must be able to transmit and receive packets

with the packet format and spacing as shown in Fig_tre 4.3.1. A packet is made up of various

bytes with the last bit of each byte transmitted firs:, and the preamble beginning a transmis-

sion. A packet may not exceed 1526 bytes or be less than 72 bytes. Included in each of

these numbers is: 8 bytes for the preamble, 14 b"tes for the header, the data bytes, and 4

bytes for the cyclic redundancy check, or CRC. The tollowing defines each field of the-frame:

1) Preamble: 64 bits of alternating ls and 0s, and ending with two consecutive ls.

The preamble is used by the receiver to establish bit synchronization and then to locate the

first bit of the frame.

2) Destination Address: 48 bits specifying the station or stations which are to

receive the packet. The packet may go to one station, a group of stations, or broadcast to

all. This is determined by the first bit: 0 - one destination, and 1 - multiple stations. If all

48 bits are set to 1, then packet is broadcast to all stations.

3) Source Address: 48 bits specifying the station which is transmitting the packet.

4) Type Field: 16 bits identifying the type of higher level protocol (protocols abov_

the network layer) associated with the packet. Used t_ interpret the data field.

5) Data Field: 46 to 1500 bytes of data or pad characters. A minimum combination

of 46 bytes is required to ensure that the frame will be distinguishable from a collision frag-

ment.

6) CRC - Packet Check Sequence: 32 bts containing a cyclic redundancy check

(CRC) generated by treating all preceding bits of the packet from the fn'st bit of the destina-
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tion field backastermsof apolynomial,dividing themby thegeneratorpolynomial:

G(x)=x 32+x 26+x 22+ x 16+x12+x 11+ _10+x 8+x 7+x 5+x 4++x 2+x+l

and then taking the remainder(the inversionof wt-_ichwill be the CRC) by meansof a linear

feedbackshift register,initially setto all Is. As a packetcomesin, the a shift registerin the

receiverperforms the sameoperation. After receiving a good packet, the receiver's shift reg-

istercontains 1100011100000100110111010111101t (x 31 + x 30 + x 26 +... + x + 1).

The Ethernet has an enforced waiting time on the bus of 9.6 I.tseconds, that is, 9.6

l.tseconds is the minimum amount of time which r':aust elapse after the end of a transmission

before another may begin. For one bit to travel from one end of the longest bus length

allowed to the other (the round-trip propagation delay time) requires 51.2 t.tseconds. If any

station receives a packet or bit sequence shorter titan 72 bytes long, the information is dis-

carded and considered a collision fragment.

When a terminal experiences a collision, it must wait a period of time known as the

"backoff" period before it mat retransmit. The backoff period in Ethernet is determined by an

algorithm known as "binary exponential backoff", wtaich can be expressed by [MARA80]:

BP = RXTs, 0<R<2k-1

where

BP = backoff period

R = a random number

k = the smaller of 8, or the number of collisions experienced during the current

transmission attempt

T s = slot time, a time slightly greater than the round-trip propagation delay

When attempting a transmission, an Ethernet terminal doubles the backoff range (the range

of possible values of R)for eight contentions, until i_ is two hundred and fifty-six times the

slot time, and then leaves the backoff range at this value for the next eight contentions. If a
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terminal experiencessixteen contentions in trying to transmit a packet, it abandonsthe

attemptandthepacketis lost.

4.4 Token Passing Protocols

In this section, we will discuss several token passing protocols in detail.

4.4.1 The ProNet Protocol

ProNet was developed by Proteon Inc. for use on the model p1200 Multibus LAN.

The information in this section was taken from the "Operation and Maintenance Manual for

the ProNet Model p1200 Multibus Local Network System". ProNet operates on a classic

ring or "star-shaped" ring, in which terminals are connected to the ring through a "wire cen-

ter", which in the case of a terminal failure, can make the necessary connections to bypass

that terminal, leaving the ring intact. These two configurations are shown as Figure 4.4.1 .

For additional reliability, each ProNet ring is actually two counter-rotating rings, i.e., one

ring in which data flows clockwise, and another in which data flows counterclockwise. If one

ring should fail, communication can then take place on the other ring in a procedure known as

"switch-back". If both rings should break at the same place for some reason, for example, a

physical break or a terminal failure, the terminals on either side of the break can go into

"loop-back", that is, connect the counter-rotating rings into one large ring, bypassing the

break. Counter-rotating rings switch- and loop-back are illustrated in Figure 4.4.2.

[PROT86]

4.4.1.1 ProNet Control Word and Message Formats

The control word and packet formats are shown as Figures 4.4.3 and 4.4.4, respec-

tively. The token consists of the "flag" (a 0 followed by a string of seven ls), and two addi-

tional l s. If a terminal has no data to send, upon receiving the token, it passes, or "repeats"

it to the next terminal.
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If a terminal doeshavedata to be transmitted,it changesthe last bit of the token to 0,

thus making it a Beginning of Message(BOM) character. It then addseight bit sourceand

destination addressbytes, its data or "message"(up to 2044 eight-bit bytes), an End of

Message(EOM) characterconsistingof the flag and an additional 0, a parity check bit, a

messagerefused/acceptedstatusbit set initially to 1, and finally, a control characterindicat-

ing the end of thepacket,either a BOM of anotherpacket,or the token. Thepacketformat is

shownasFigure4.4.4. [PROT84]

In order to assure that no control character occurs in the messagedata, ProNet

employs "bit stuffing". While creating a packet for transmission,if a terminal detectsa

streamof six consecutivels, it "stuffs" a 0 into the databehindthem, insuring that the seven

l s of the flag will never occur in the datamessage. This stuffed 0 will be removedby the

addressedterminalasit "copies"thedatafrom thering into a buffer for its own use.

When a terminal recognizesits addressas the destinationaddressin a data packet,

it copies the messagepart of the packet into a buffer for its own use, and then sendsthe

packetback onto the ring, resettingthe messagerefused/acceptedstatusbit to 0. If a termi-

nal is for somereasonunable to copy data addressedto it, it repeatsthe packet along the

ring, leaving the messagerefused/acceptedbit 1. When a terminal detectsa data packet

which it had previously transmitted,it removesit from the ring, leaving only the tokenor the

BOM of the next message.Dependingon the application, the terminal may monitor themes-

sage refused/acceptedbit, and retransmit its data (if necessary)upon again receiving the

token.

In order for the ring to recoverfrom errorssuchas the lossof a tokenor packet,each

terminal is equippedwith three hardwaretimers: the token timer, the flag timer, and the

messagelost timer. The token and flag timers track the amountof time betweenthe detec-

tion of a tokenor the flag respectively. If either of thesecountsexceeda set amount,the ter-

minal will "re-initialize" the ring by generatingand repeatinga token. If two or more termi-

nals try to re-initialize the ring within 500 gsecondsof eachother, a collision will occur, and

84



the ring will still be without a token. Upon the detectionof a collision, the token and flag

timerswill be reset,leaving it for anothertermina to re-initialize the ring. ProteonInc. feels

thatcollisionsduringre-initializationarevery unlikely.

The messagelost timer servesa different function. After a terminal has transmitteda

packet, it repeatsno other dataalong the ring until it detectsits own packet, indicating that

the packet has made it successfullyaround the 1rag. (This is to remove "noise" from the

ring.) The messagelost timer begins counting when a packet is transmitted,and resets

when that samepacket is againdetected. If the messagelost timer exceedsa set count

(determinedby the maximumamountof time required for a packetto entirely circle the ring),

it is assumedthat the packet is lost, and the temtinal resumesrepeating all data that comes

into it. Dependingon the application,the terminal may or may not attemptto retransmit the

lost packetuponreceivingatoken.[PROT84]

4.4.2 The Fiber Distributed Data Interface Protocol

The Fiber Distributed Data interface (FI)DI) is a proposed standard for a 100

Mbit/second ring network. FDDI terminals may be connected directly to the ring, in a

"classic" ring configuration, or through "concentr_tors" (devices similar to ProNet wire-cen-

ters) in a "star-shaped" ring. Unlike the ProNet wire-center, however, FDDI concentrators

may be addressed and treated as independent terminals as well as simply connecting other

terminals to the ring and thus may serve as gateways linking FDDI rings. In such linked

rings, the token is passed asthough all terminals were on one, large ring.

In addition to concentrators, FDDI terminals have an optical bypass that maintains

the integrity of the ring even if that terminal shoul2 fail, as shown in Figure 5.4.5 [FDDI88].

Up to three adjacent terminals may be bypassed without harming the ring. For additional

reliability, FDDI maintains counter-rotating rings, and may employ switch-back or loop-

back similar to ProNet.
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4.4.2.1 FDDI Data Formats

This section will deal with the formats of _:'rames and tokens used by FDDI. FDDI

words are made of five-bit "symbols" generated by a four-out-of-five code. Sixteen of the

thirty-two member FDDI symbol set are reserved ::'or encoding data, each symbol represent-

ing four binary bits. The rest of the symbols are used for various functions such as: three

symbols used as starting and ending delimiters, two used as control indicators, and three axe

used as line-state signaling and are recognized by the physical layer.

The symbols are grouped together in fields and the fields in turn make up frames or

tokens, as shown in Figure 4.4.6. The fields are described in greater detail below:

a) The Preamble (PA): This field consists of IDLE line-state symbols and serves as

a maximum frequency signal used for establishing md maintaining clock synchronization. A

PA field must precede every transmission. -

b) The Starting Delimiter (SD): The SD, fi_ld consists of a sequence of two delimiter

symbols. The SD field establishes the symbol bound_wies for the content that follows.

c) The Frame Control (FC): The FC field contains information about the frame, and

indicates to the receiving terminal if the frame is synchronous or asynchronous, the address

field length, and the frame type (logical link conuol or station management). The FC field

may indicate that the frame containing it is unfo_matted, and that terminals should simply

repeat the frame down the ring without checking for their address or the frame's validity

d) Address Fields: The Source Address (SA) field contains the address of the termi-

nal from which the frame originated and the Destination Address (DA) field contains the

address of the terminal for which the frame is inte_ded. Both may be either 4 or 12 symbols

wide, depending on the number of terminals on the ring. The DA field may contain either the

address of a specific terminal, or a sequence indicating the message is to be received by sev-

eral terminals.

e) The Frame Check Sequence (FCS): The FCS field performs the same function as

the Ethernet CRC word, i.e., a cyclic redundancy _heck. It is generated by the ANSI stan-
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Frame Format

PA SD FC DA SA

FCS Coverage

FCS ED FS

Token Format

PA SD FC ED

PA = Preamble (16 or more symbols)
SD = Starting Delimiter (2 symbols)
FC = Frame Control (2 symbols)
SA -- Source Address (4 or 12 symbols)
DA = Destination Address (4 or 12 symbols)

FCS = Frame Check Sequence (8 symbols)
ED = Ending Delimiter (1 or 2 symbols)
FS = Frame Status (3 symbols)

FIGURE 4.4.6 FDDI FRAME AND TOKEN FORMATS [ROSS86]
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dard polynomial. The fields coveredby the FCS c,resist only of data symbols. No other field

contains data symbols.

f) The Ending Delimiter (ED): The ED fi:ld consists of one delimiter sequence and

indicates the end of information in a frame and the end of a token.

g) Frame Status (FS): This field is used l,y terminals to indicate that they have rec-

ognized the frame as being addressed to them, ccpied its data, or detected and error in the

frame. The terminal that transmitted the frame will check the FS field to see if the destina-

tion terminal received the frame and/or copied its data.

Any terminal detecting an error in a frame while repeating it will change flags in the

FS field. Thus the FS field may be used by receiving terminals to determine the validity of

the frame. [ROSS86]

4.4.2.2 Timed Token Rotation

The timed token rotation method of FDDI _=ccess may best be described by describing

the initialization procedure as well as the functions o:' various timers in the FDDI terminals.

4.4.2.2.1 Initialization

The initialization period is used for establishing the target token rotation time

('I'I'RT). Each terminal calculates the maximum _mount of time that the token may take to

completely circle the ring and yet is still fast enough to support all of that terminals syn-

chronous traffic needs. The shortest of these times b,_comes the TTRT.

During initialization period, the percentage of bandwidth each terminal may use for

transmission of its frames is allocated by assignirtg each terminal a percentage of the total

TTRT, or bandwidth, in which it may transmit upc, n capturing the token. This percentage of

TTRT is known as the terminal's operational tari_et token rotation time (T_Opr). Frames

transmitted during a terminals allocated time are _eferred to as synchronous data. A termi-

nal may also transmit additional frames, if the traffic on the ring is light enough. These
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flames are referred to as asynchronousdata. Assignmentof bandwidth is applicationdepen-

dent, and may bechangedduring the operationof the ring. The sum of all terminalsassigned

bandwidth must not exceed100%. If 100%of the bandwidth is assigned,therecan be no

asynchronoustransmission. [JOHN87]

4.4.2.2.2 Timing

Each terminal is equipped with several timers and counters that tell it when it may

capture the token and transmit its data. These include the token ring timer (TRT), the token

holding timer (THT) and the late counter (Late_C). Their functions are described below.

The token rotation timer determines when a terminal may capture the token and

transmit its synchronous data. The TRT is initialized to T_Opr and is decremented with

every pulse of an internal clock. If the TRT expires, the late counter is incremented and the

TRT is reinitialized to T_Opr.

If a token arrives before the TRT has reached zero, i.e. Late_C = 0, the current value

of the TRT is placed in the token holding timer, and the TRT is reinitialized to T_Opr. The

value placed in the THT thus represents the amount of time left over in the previous token

cycle from its required minimum, T_Opr, that is, the amount of unused bandwidth. A station

may transmit asynchronous data if THT has not expired and Late_C = 0. The THT is

enabled only during the transmission of asynchronous data, as opposed to the TRT which is

always enabled.

Expiration of the TRT indicates that traffic on the ring is heavy, which is why asyn-

chronous transmission is allowed only when Late_C = 0. When a token arrives and Late_C

is not 0, the late counter is reset, but the TRT is not reinitialized to T_Opr. [JOHN87]

4.4.2.3 Restricted Token Mode

Restricted Token Mode is an optional feature of FDDI used for extended communica-

tion "bursts" between two terminals. The only difference between restricted token mode and
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the operation described above is that the two termi1_als involved in the burst are the only ter-

minals allowed asynchronous transmission. [JOHNS":]

4.4.2.4 Virtual Circuit Switching

Another optional feature of FDDI is virtual circuit switching. FDDI systems featur-

ing virtual circuit switching are often referred to as FDDI-II.

FDDI-II systems are initialized in the token mode, and if a terminal requires a virtual

circuit connection, it vies for the position of cycle master. When a station has won the right

to be cycle master, it imposes cycles on the network at an 8 kHz rate, i.e., one cycle every

125 I.tseconds. The cycle master may find it necessary to induce latency periods in order to

maintain an integral number of cycles on the ring. The cycle format is shown in Figure 4.4.7.

A cycle and a frame both start with a preamble and a starting delimiter. Ifi a cycle,

however, the starting delimiter is followed by the isochronous channel temperature, which

consists of 16 symbols, one for each possible isochronous channel. Each symbol indicates

whether its corresponding channel is an isochronotJs channel or is free for use by the token

channel. If the Nth symbol of the channel temper;_ture indicates that its corresponding chan-

nel is isochronous, then the Nth byte of each of the 96 programmable data groups belongs to

that channel. Only the cycle master may assign isochronous channels.

The dedicated token data group, along with all bytes in the programmable data groups

not assigned to an isochronous channel make up a "super-channel" known as the token chan-

nel. Tokens and frames within this channel axe the same as in non-FDDI-II systems,

except that in place of the starting delimiter (which is reserved to indicate the beginning of

the cycle), there are two line-state symbols, halt aJ_d idle. In the cycle format, the halt/idle

combination is used exclusively as an alternative to the starting delimiter of frames in the

token channel. [ROSS86]
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Time

|

|

PA SD I TM CS TDG DGO DG1 DG95

PA = Preamble (1 symbol, nominal)

SD = Starting Delimiter (2 symbols)
TM = Iso-Synchronous Channel Temperature

(16 symbols)

CS = Cycle Sequence (1 octet)
TDG= Dedicated Token Data Groups

(16 octets)

DG0...DG95 = Programmable Data Groups
(16 octets each)

FIGURE 4.4.7 FDDI-II CYCLE FORMAT [ROSS86]
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4.4.3 SAE AE-9B High Speed Token Passing Data Bus for Avionics

Applications (AE-9B)

The SAE AE-9B High Speed Token Passing Data Bus for Avionics Applications,

hereby referred to as AE-gB, is a proposed standard for an explicit token passing bus net-

work for either fiber optic or wire media being dew, loped by the AE-gB Linear Implementa-

tion Task Group , a subcommittee of the Society o:" Automotive Engineers. As of this writ-

ing, no one has developed hardware to support AE-gB, but we nonetheless include it in this

report to demonstrate an example of explicit toker_ passing on a bus network. Also, other

standards proposed by the Society of Automotixe Engineers, such as MIL-STD-1553B,

have become quite common, and it is likely that h:_rdware to support AE-gB will developed

in the near future.

The terminals of AE-gB are physically arraaged on a bus network, but logi.cally, the

token is passed from one terminal to another so that the network timing is very similar to a

token passing ring, as shown in Figure 4.4.8. Unlike token passing rings, however, the AE-

9B token must be specifically addressed to a terminal. Each terminal passes the token to

the terminal with the next highest physical addre,_s, until it reaches the terminal with the

highest physical address, which passes the token to the terminal with the lowest physical

address. This is known as a "token cycle". AE-gB is designed to accommodate up to 128

terminals. [MEYE86]

4.4.3.1 Bus Initialization

When the bus is first brought into operatior, no terminal possesses the token and the

network must be initialized using the "claim token" procedure. Upon being powered up, each

terminal monitors the bus for any activity. If a ter_rdnal sees no activity on the bus, it trans-

mits a "claim token frame". If at the end of this trmsmission, there is still no activity on the

bus, the terminal issues a token to its successor on the token path. The claim token frame is

proportional to the length of the terminal's physical address, so that during initialization, the
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FIGURE 4.4.8 TOKEN PASSING PATH EXAMPLE [MEYE86]
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tokenshouldbe issuedby the terminalwith the highestphysical addressto the terminalwith

the lowestphysical address. Each terminalwill then "hunt" for a successorusing the station

insertionproceduredescribedbelow.

4.4.3.2 Removal of Terminals from the Token Path

After a terminal issues a token to its successor, it monitors the bus for any activity

from that successor. If it sees none, it issues the tc, ken again, and again monitors the bus for

any activity. If a terminal fails to see any activity on the bus after two attempts to issue the

token, it assumes that its successor has failed. The terminal issuing the token increments

its successor address, and repeats the procedure cescribed above until it detects a success-

ful token pass, that is, upon passing a token, a terminal sees activity from its successor.

It must be pointed out that a terminal will still attempt to pass the token to its suc-

cessor on every token cycle, even if that successor l'ailed to receive the token on the previous

pass. Thus failed terminals on a network can cause the bus to be tied up with the "successor

hunt" procedure described above increasing "overhead" on the network, which in turn

increases data latency, and reduces throughput.

Fortunately, if a terminal realizes that it will soon fail, or knows that it will not be

needing the token for some time, there is a way fc_r it to remove itself from the token path.

To do this, a terminal issues an "exit token" to its ._uccessor. An exit token conveys control

of the bus, just like a regular token, but in additiorl, it alerts the predecessor of the terminal

issuing the exit token to increment its successor address. Thus, by issuing an exit token, a

terminal effectively removes itself from the token lzath, eliminating the need for its predeces-

sor to "hunt" for it during the next token cycle.

4.4.3.3 Insertion of Terminals onto the Token Path

To bring terminals on the network, each terminal periodically attempts to pass the

token to all the terminals (if any) whose physical addresses lay between its own and its cur-

95



rent successoraddressusing the same"successorhunt" proceduredescribedin the previous

sections. If one of these terminals responds to the token pass, the terminal issuing the

token changes its successoraddressto the addressof the terminal that responded,thus

effectively bringing that terminal onto thetoken path. The length of time betweenwhen ter-

minals check to seeif thereare other terminals to be insertedinto the tokenpath is a param-

etersetby the user.

4.4.3.4 Timing and Prioritization

In order that a terminal may know how much traffic is on the network, it is equipped

with four timers, the Token Holding Timer (TILT), and three Token Rotation Timers (TRT).

All timers are reset to user defined values when a station receives the token and begin

counting down to zero. If their is a lot of traffic during a token cycle, it will take much longer

for the token to complete the cycle, and terminals can detect this by the expiration of one or

more of their timers.

AE-9B allows for four message priority levels for each terminal. Each timer corre-

sponds to a different priority level. The user can define these priorities by defining the reset

values of the THT and the TRTs. Highest priority messages may only be transmitted if,

upon receiving the token, its THT has not expired, the highest message may be transmitted.

If the THT has expired, there has been a great deal of traffic on the bus, and upon receiving

the token, the terminal simply resets its timers and passes the token to its successor. Thus,

by setting the reset value of a terminal's THT to a large value, the user grants that terminal

greater access to the bus than a terminal with a smaller reset values for their THTs.

A similar procedure is followed for messages of lower priorities. A message of a giv-

en priority may only be transmitted only if its corresponding TRT has not expired. Thus the

larger the reset value for a TRT, the higher the priority of its corresponding messages.

Obviously, messages corresponding to a TRT may not be made a higher priority than the

messages corresponding to the THT, since when the THT has expired, the terminal will not
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begrantedaccessto thenetwork,nomatterwhat thevaluesof its TRTs.

4.4.3.5 Terminal Management Functions

AE-9B allows for 512 "sub-addresses" for each terminal, so that terminals may give

commands or instructions to one another. The user may program subaddresses for his own

commands in additions to the built in commands, or 'functions", described below.

Mode Control Command/Status Response: This command allows a terminal to force

another terminal to perform one of the following fun<:tions:

1. Terminal Hardware Rest

2. Terminal Enable/Disable

3. Execute Built-In Test (BIT_

4. Enable/Disable Bus Loop-Back Tests

5. Report Status

6. Report Traffic Statistics

7. Enable/Disable Global Tirr_e "Master mode

8. Report Time

Load/Report Configuration: This command allows the user to define his own func-

tions, or to set the user defined parameters of st_tion insertion period, THT and TRT time

out factors and bus length. This command can also be used to set a terminals physical

address using what is known as the "message filter" function.

Test Messages Report: This command is used to test the integrity of the data path.

Data words in a Test Messages Report (TMR) ccmmand are stored by the receiving termi-

nal, an retransmitted upon again receiving a TMR command.

Built-In Test Functions (BIT): AE-9B Frovides several types of built in testing,

such as internal message loop-back testing to test the host/bus interface unit integrity.

Time Synchronization Report: Each AE-9tL terminal contains a 48 bit real-time clock

for system function synchronization, or to provid,z a "time tag" to messages indicating the
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• "staleness"of data. One terminal is designatedthe "time master", and periodically synchro-

nizes all the other terminals clocks to its own using the time synchronizationreport com-

mand. If the time master fails to synchronizethe network twice in a row, anotherterminal

assumesthe role of time master. The terminals that may function as time mastersare

assignedby theuser. [MEYE86]

4.5 Hybrid Protocols

Hybrid protocols are not as prevalent as "pure" protocols, although a few have been

developed and are commercially available and many more have been simulated. Hybrid pro-

tocols have shown excellent performance. This section will discuss SEAFAC, a com-

mand/response-token passing hybrid; a token passing-CSMA/CD hybrid; HYPERchannel,

a virtual token passing-CSMA hybrid; and L-Expressnet, another virtual token passing-

CSMA hybrid.

4.5.1 The SEAFAC Protocol

This protocol, hereby referred to as SEAFAC, was developed and simulated by

Harold Alber and Wayne Thomas at the Systems Engineering Avionics Facility at Wright-

Patterson Air Force Base to accommodate the avionics requirement of the next generation

fighter and bomber aircraft. The information in this section was taken from their unpublished

white-paper, "A Dual Channel High Speed Fiber Optics Multiplex Data Bus System".

SEAFAC is a hybrid of token passing and command response protocols. Usually,

SEAFAC operates under a token-passing scheme. Upon receiving the token, if a terminal

has no information to send, it sends a token message addressed to the next terminal, giving

it control. However, should a terminal have information to send and is in possession of the

token, it will send either a data or control message, using one of the formats shown in Figure

4.5.1. A control message sends only control and status information to the other terminals,

while a data message sends this information along with from 1 to 256 data words. Both data
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START CMD
SYNC WORD

TIME TAG
WORD

1-256 DA'FA
WORDS

CRC
WORD

TOKEN END
WORD SYNC

DATA MESSAGE

START CMD
SYNC WORD

TIME TAG CRC
WORD WORD

TOKEN END
WORD SYNC

CONTROL MESSAGE

START
SYNC

TOKEN
SYNC

END
SYNC

TOKEN MESSAGE

FIGURE 4.5.1 SEAFAC MESSAGE FORMATS [ALBE 86]
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FIGURE 4.5.2 MULTIPLE PATH TOKEN PASSING EXAMPLE [ALBE86]
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andcontrol messagescontainatokenword addressedto thenext terminal,giving it control.

If a terminal receives the token, and transmits no messageswithin 15.0 _tseconds

(the worst casepropagationdelay in a 1000mnetwork), the schedulerterminal assumescon-

trol of the network, and determinesto which terminal to senda token message. This com-

mandresponsetypeof behavioris alsoutilizedwhenthenetworkf'trstbeginsoperation.

In order to alleviate data latency problems inherent in token passing protocols,

SEAFAC recognizesthat some terminals just aren't as important as others, and prioritizes

them such that important terminals will receive the token more often. The terminals are

groupedinto "paths", anexampleof which is shownin Figure 4.5.2. The schedulerpasses

the token from path 1 on the first pass,path2 on the secondpass,and so on. In the four-

pathexampleof Figure 4.5.2, high priority terminalsareon all four paths,the mediumpriori-

ty terminals areon only two paths,and the low priority terminalseachareonly on-onepath.

Thus, high priority terminalswill seethe token on every pass,while mediumpriority termi-

nals will seethe token only on two out of four passes,and low priority terminalswill seethe

tokenonly onceeveryfour passes.

It must be pointed out that the "paths" arenot physical connections. This allows the

priorities and pathsof the terminals to be assigneddynamicallyby the scheduler. For exam-

ple, a terminal important when the network first begins operating, yet whose importance

diminishesastime passescanbeprioritized accordingly.

Both the data and control messagescontain a sixteen-bit command (CMD) word.

The first bit of this word indicateswhetheror not the messageis global, i.e., intendedfor a

classof terminalsas opposedto a specific terminal. If it is set to 1, the messageis global,

and the next three bits indicate to which of up to eight classesof terminal the messageis

intended. If, on the otherhand,the messageis intendedfor a specific terminal,the fir-stbit of

the CMD word is set to 0, and the next sevenbits are usedfor the specific addressof the

oneof up to two-hundredandfifty sixpossibleterminals.

The eight bits following the addressbits are used for "sub-addresses",which are
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essentially commands to the addressed terminal. The scheduler may use the sub-addresses

to initialize terminals, initiate self-tests, request sta_:us information, load the token-passing

address, synchronize the terminal, load the memor.J of the terminal, or request data from

the terminal.

Terminals other than the scheduler may use the sub-addresses to transmit self-test

and status information by putting their own address in the seven-bit address field of the

CMD word. This allows for any terminal to know the status of any other in the network.

The sub-addresses may also be used for hand-shaking messages such as request data,

acknowledge data receipt, or request next block of data. The last also requires a terminal

making the request to place in the address field of the CMD word the address of the terminal

providing the data block.

The time-tag word of data and control messages tells the terminal or termirials being

addressed the "staleness" of the message. All ter:,ninals have internal clocks periodically

synchronized by the scheduler. When a terminal sends a message, it places the time at

which the message originates into the time-tag word, so that the addressed terminal or ter-

minals may know to within 20.48 gseconds how of'el the message is. If, for some applica-

tions, terminals must know the age of the message more precisely, an additional sixteen-bit

time-tag word may be added, allowing the terminal t_ know the age of the data to within 0.01

p.seconds.

Data words are sixteen-bit bytes, and a data message may contain up to two-hun-

dred and fifty-six of them. The content and ordenng of data words within the message is

application dependent, but is the same for all messages with the same message ID.

The Cyclic Redundancy Check (CRC) word is a sixteen-bit word used for detecting

errors in the message. The CRC word may be generated in the same manner as the Ether-

net CRC word described above, except that

G(x)=x 16+x 15 ....x2+1

is used as the generator polynomial. This is a very powerful method of error detection and is
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Table 4.5.1 SEAFAC Data Efficiency [ALBE86]

Total Words Data Words
Message Length Efficiency

Bits Time (gseconds) Data Bits/Total Bits

1

4

5

6

8

12

20

36

68

132

260

516

1028

2052

4100

0 22 0.44 0.0%

0 70 1.40 0.0%

1 86 1.72 18.6%

2 102 2.04 31.4%

4 134 2.68 47.8%

8 198 3.96 64.6%

16 326 6.52 78.5%

32 582 11.64 88.0%

64 1094 21.88 93.6%

128 2118 42.36 97.0%

256 4166 83.32 98.3%

512 8262 165.24 99.2%

1024 16454 329.08 99.6%

2048 32838 656.76 99.8%

4096 65606 1312.12 99.99%
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much more efficient than parity check bits in data words since it does not requirea word-

count field. Using a CRC word allows the following typesof errors to be detected: all odd

numbersof error bits, all single-bursterrors of sixteen bits or less, 99.9969%of seventeen

bit bursterrors,and99.9984%of single-bursterrors c,feighteenor morebits.

Table 4.1, showsthe "dataefficiency", or the ratio of datawords to "overhead"in a

data message. Since the overheadis limited to tie fixed-length Start Sync, CMD, Time-

Tag, and CRC words no matter how many data words, the longer the data message,the

moreefficient the systemis. A price is paid, howe,_er,in theamountof time requiredto send

a message. For data messagescontaining two-hur_dredand fifty-six data words (the maxi-

mumallowedby SEAFAC),dataefficiency is 98.3%.

The Token Word is alwaysthe last word in a message,and indicatesthe next termi-

nal that may transmit. If a terminal seesits addre,s in the Token Word, it may transmitso

long as the addressparity is correct, the token word is composedof valid Manchestercoded

bits, and the token word is followed by an End SyJ_c.The last eight bits of the token word

provide statusinformation for the terminal originat:_ngthe messagein which the token word

is contained. This informationcanbe usedby the s:heduler to determinethe overall healthof

the systemand/orwhich terminalsneedservicing. The status bits in the token word may be

used by other terminals to decide whether to acc:zpt or reject the message based on the

health of the terminal addressing them.

The Start Sync word is used to synchronize a terminal's front-end decoder, with syn-

chronization maintained by the Manchester coded bits of the message. It also initializes a

modulo 16 bit-counter and a cyclic redundancy chzck register that performs the same CRC

operation used by the originating terminal to generate the CRC word. The End Sync words

stops the operation of both the counter and the register. If, either the modulo 16 bit-counter

does not contain the value 6, or the contents CRC register do not match the CRC word, the

message is considered invalid and rejected. [ALBE86]
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4.5.2 Hybrid Token-CSMA/CD Protocol

The Token-CSMA/CD hybrid protocol (hereby referred to as Token-CSMA/CD)

described in this section was developed and simulated by P.M. Gopal and J.W. Wong at the

University of Waterloo in Ontario, Canada. It is for use exclusively on bus topologies.

While, there axe no commercially developed protocols based on this hybrid, it has shown sig-

nificant benefits over conventional CSMA/CD or token passing in simulation and merits dis-

cussion.

In order to use Token-CSMA/CD, terminals must be synchronized. Time is divided

into units called "slots", each slot representing the time for a bit to travel completely up and

down the bus medium. Terminals may only initiate transmission at the beginning of a slot.

For best performance, data packets and backoff periods should be multiples of the slot-time,

with the backoff period lasting as long or longer than the packet length

The token in Token-CSMA/CD is not a control message. Each of the M temfinals in

the network has an individual identity number from 0 to M-1. In order to know when it is

possession of the token, each individually numbered terminal monitors the bus channel and

increments and modulo M counter each time the channel undergoes a transition from busy to

idle. When the contents of the counter are the same as the terminal's identity number, it is

in possession of the token. For example, on a network of five terminals, terminal 0 will pos-

sess the token after 0, 5, 10 .... channel transitions from busy to idle, terminal 1 after I, 6,

1 1.... transitions, and so on.

The behavior of a Token-CSMA/CD is exactly like that of conventional CSMA/CD,

except in the event of a collision involving a terminal in possession of the token. In this

event, those terminals involved in the collision without the token go into their "backoff" peri-

od, waiting to retransmit. Upon detection of a collision, for a period of one slot-time, the ter-

minal in possession of the token keeps the channel busy, but without transmitting its data.

At the end of this delay, any other terminal attempting to send data would have detected a

collision, and have entered its backoff period, thus insuring that the channel is free. The ter-
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minal with the token then sends its data, guaranteed of i successful transmission.

Packet delays for low through-puts are aboLJt the same for Token-CSMA/CD and

conventional CSMA/CD, and for a small range of _hrough-puts, conventional CSMA/CD is

actually faster. For high through-puts in which many stations are involved in a collision,

however, the effect of the token is seen, and To<en-CSMA/CD has much lower packet

delays than conventional CSMA/CD. [GOPA84]

4.5.3 The HYPERchannel protocol

The HYPERchannel protocol (hereby referred to as "HYPERchannel") is, like Ether-

net, a CSMA protocol, that is each terminal "listens" to the medium, in this case a bus, and

transmits only when the bus is free. Unlike Ethernet, HYPERchannel does not employ colli-

sion detection. Instead, it uses message acknowledgments, several delay types, and priori-

tized terminals to ensure that only very short messages will experience a collision.

4.5.3.1 HYPERchannel Delay Sequence

As stated above, in order to avoid collisioxts, after the bus becomes idle, HYPER-

channel employs a sequence of delays, during which only certain terminals may transmit.

That sequence of delays is as follows:

a) Fixed Delay: During this time, the terminal which received the previous transmis-

sion sends a response frame (described below) to the terminal from which it received the

transmission.

tion:

All other terminals experience a dela/, whose length is described by the equa-

Fixed Delay = 4 nseconds x (trunk ler_gth in feet) + 2.08 gseconds

which is slightly greater than twice the amount of :ime it takes for a signal to propagate the

entire length of the bus and back.

b) N-Delay: In HYPERchannel, each tern_inal is assigned a unique priority used in
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determiningthe amountof time it mustwait after the fixed delay beforeit may transmit,or its

N-Delay. TheN-Delayof eachterminalmay be expressedby thefollowing equations:

N-Delay(K) = N-Delay(K-l) + 4 nsecondsx d + 1.6_tseconds,K = 1,2.....L
N-Delay(I) = 4.8gseconds

where

K = priority indexof the terminal
L = the number of terminal on the

bus
d = the distance in feet from the

terminal of priority K-1 to the
terminal of priority K

Thus, each terminal is guaranteed a period of 1.6 t.tseconds in which it may initiate a trans-

mission guaranteed to be without collision. It is important to note that terminals with low

priority indexes are able to transmit more often than terminals with high priority indexes.

The times in which terminals are guaranteed collision-free transmission are collectively

referred to as the scheduling period.

c) End Delay: After the scheduling period, each terminal must wait an additional

time period before it may begin transmission. During this time, they listen to the bus medi-

um to ensure that the terminal with the lowest priority, that is, the terminal with priority

index, L, has not begun a transmission. This listening period is referred to as the end delay,

and its length for each terminal may be expressed by the equation:

End Delay(K) = N-Delay(L) + 4 nseconds x d' + 1.6 I.tseconds, K=l,2 ..... L-1

where L and K are defined the same as for N-Delay, but d' is defined as the distance in feet

from the terminal of priority index K to the terminal farthest from it.

After the end delay comes the contention period, where any terminal may transmit ff

it senses that the bus is idle. This is the only time when collisions can occur. HYPERchan-

nel terminals do not detect collisions, but instead rely on an acknowledgment from the termi-

nal to which their transmission was addressed during the fixed delay period. If this acknowl-

edgment does not arrive, they know their transmission was unsuccessful.
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4.5.3.2 The Wait Flip-Flop

To prevent high-priority terminals from domiaating the bus medium, each terminal is

equipped with a wait flip-flop that is set when a terminal completes a transmission, and

cleared at the end of the beginning of the contention period. A terminal may not transmit

when its wait flip-flop is set. The wait flip-flop of any individual terminal may be disabled if

necessary, depending on its application.

4.5.3.3 HYPERchannel Frames and Sequences

The smallest unit of data transmitted by a HYPERchannel terminal is called the

frame. There are three types of frames: transrr_ission, response, and message-and-data

frames. The sequences of frames for transmission are shown in Figures 5.5.4 and 5.5.5. The

function of each is described below:

a) Transmission Frames: Transmission fr_les are used for "handshaking", i.e., the

exchange of control and status information between two terminals. The terminology used in

this report often differs from that used by Network Systems Corporation, the manufacturers

of HYPERchannel systems. When this is the case, the equivalent Network Systems Corpo-

ration term will be placed in parentheses after our t3rm. The transmission frames are listed

and described below:

1) Request Status, RS (Copy Registers): The request status frame is used

by a terminal to see if a terminal to which it wishes to transmit is capable of receiving the

transmission. In frame sequences, the request status frame captures the bus for the trans-

mission of subsequent frames.

2) End Message Proper, EMP (Clear Flag 8): This frame is sent by a trans-

mitting terminal to indicate to the receiver that it hz_s completed a message proper frame (to

be described below). Flag 8 in the receiver is set when it is waiting for a message proper,

and cleared by the transmitting terminal when the complete message proper has been trans-

mitted.
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Channel Channel
Terminal A Terminal B Held Free

Request Virtual Circuit

• Response /_

Delay

Request Status

• Response

Message Proper

" Response

End Message Proper

-- Response

FIGURE 4.5.3 TIMING FOR TRANSFER OF MESSAGE-ONLY

SEQUENCE FROM TERMINAL A TO TERMINAL B [FRAN84]
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TerminalA

RequestVirtual Circuit

Preparefor AssociatedData

Request Status

Message Proper

End MessageProper

Delay

Delay

Response _-
Delay

Request Status ,,

Associated Data •

d of Associated Data ,.

Delay

Response " _-

End of Associated Data _.

Delay

w Repeated for each associated data frame

Channel Channel

Terminal B Held Free

Response _,_

Re:.ponse

Re:;ponse

Re::_ponse

Re:_ponse

Re,ldy for Associated Data I

I

Response

Response

Re sponse

Ready for Associated Data

Response

I

FIGURE 5.5.4 TIMING FOR TRANSFER OF MESSAGE-WITH DATA

SEQUENCE FROM TERMINAL A TO TERMINAL B [FRAN84]
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3) Preparefor AssociatedData, PAD (Set Flag A): This frame alerts the

receiving terminal that after the messageproper, associateddata frames (to be explained

below)will follow.

4) Readyfor AssociatedData,RAD (Clear Flag9): After a terminal receives

a PAD frame, it must preparebuffer spacein order to receive the associateddata. When it

hasdone this, it sendsa RAD frame to the terminal which sent it the PAD. A terminal will

not transmit associateddata framesto their destinationterminal until the destinationtermi-

nal sendsit aRAD.

5) End of AssociatedData, EAD (Clear Flag A): This frame is transmitted

by aterminal to indicateto thereceiverthattherewill beno moreassociateddataframes.

6) RequestVirtual Circuit, RVC (Set ReserveFlag): This frame is sentby a

terminal when it desiresa virtual circuit connection(to be describedlater) with thereceiving

terminal.

b) ResponseFrames: Responseframes are transmittedonly during the fixed delay

to acknowledgethe receptionof a frame. A response frame may contain status information if

it is used to acknowledge a request status frame.

c) Message and Data Frames: There are two types of message and data frames,

message proper frames, which contain up to 64 bytes of data; and associated data frames,

which may contain up to 2 kilobytes of data.

The transmission of data from one terminal to another requires the exchange of sever-

N frames known as a frame sequence. Terminals do not control the bus for the entire dura-

tions of the frame sequence, but rather relinquish control at various times, as shown by Fig-

ures 4.5.3 and 4.5.4. There are two types of frame sequences: message only sequences, in

which only the data contained in a single message proper is exchanged; and message with

data sequences, in which associated data frames follow a message proper.

In order for two terminals to exchange a message with data sequence, they must

establish a virtual circuit. The sending terminal, from which the data originates, reserves
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itself to only communicate with the receiving terminal, to which the data is destined. It then

sends a request virtual circuit frame to the receiving terminal. If that terminal is capable of

receiving a data sequence, it will reserve itself to ccrmmunicate only with the sending termi-

nal. When the two terminals are reserved only to cc_mmunicate with each other, they said to

be in a virtual circuit connection.

If the receiving terminal is unable to make a virtual circuit connection, the sending ter-

minal will wait for a delay period which can be expres:;ed by the equation

Retry Delay (k) = 2 (k-1) modulo 7 x 1 t.tsecond, k= 1,2 ..... RC

where k is the number of the attempt, and RC is a terminal parameter known as the Retry

Count. Thus, after failing to establish the virtual circuit connection once, the sending terminal

must wait 1 lasecond before sending another RVC trame. If that attempt fails, it must then

wait 2 I.tseconds, and then 4, and so on up to 128 I.tseconds, after which the cycle repeats

itself until the number of attempts to establish a virtual circuit has exceeded the retry count.

If this happens, the sending terminal will no longer _e reserved for communication only with

the receiving terminal. It is important to note that the retry delays are fixed times that dou-

ble with each retry, and not random time periods ch,_sen from an interval that doubles in size

for each retry, as in the binary exponential backoff alg,_rithm as used in Ethernet. [FRAN84]

4.5.4 L-Expressnet

L-Expressnet was developed for a bus netw:_rk known as Campus Net (C-NET) by

the Consiglio Nazionale delle Ricerche of Italy. It is similar to the Expressnet protocol

developed at Stanford, and even more similar to a protocol known as BID for bidirectional

buses. The information for this section was taken f_om "L-Expressnet: The Communication

Subnetwork for the C-NET Project", by Flaminio Bor_onovo, et al. [BORG85]

In L-Expressnet, the token is passed virtualb, rather than through the reception of an

actual message or control signal. Each terminal is equipped with several timers (whose

functions will be explained later) that indicate when a terminal is possession of the token. In
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order for the L-Expressnet protocol to work properly, all terminals on the bus must have a

unique index that reflects the terminal's spatial position on the bus. For example, the termi-

nals may be indexed from left to right, each terminal having a higher index than the one on its

left.

At the beginning of a cycle, or "train", as it is called, all of the timers on the enabled

terminals on the bus are reset and begin counting upon the detection of a signal known as the

"locomotive". The locomotive need not be a string of ones and/or zeroes. It may be simply a

burst of the carrier signal, or the first 0 to 1 transition after the end of the previous train.

Sample trains are shown in Figure 4.5.5.

A terminal of index i knows it is in possession of the token when a counter, CR1,

reaches the value:

CRl(i) = (i- 1) x A

where A is a length time greater than the reaction time, i.e. the time it takes for a terminal to

detect and act upon a carrier transition on the bus. After a terminals CR1 counter has

reached the value described above there is a time period of length A in which it may transmit

a packet guaranteed of no collision. Although a terminal may or may not have data packets

to transmit when it is in possession of the token, there will be a time of length A before

another terminal may transmit. If a terminal does transmit when in possession of the token,

the end of its transmission marks the end of the train.

After a train has traversed the bus, a new locomotive must be generated by the low-

est indexed enabled terminal on the network. To know whether or not it should generate a

new locomotive, each terminal is equipped with another counter, CR2, that also begins count-

ing upon the detection of the locomotive. A terminal may generate a locomotive if its CR2

reaches a value that reflects the amount of time required for a train to traverse the network

(M * A, where M represents the number of terminals on the bus), plus the amount of time it

would have taken for a train generated by a terminal of lower index to reach it. That is, a ter-

minal of index i may generate a locomotive if :
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FIGURE 4.5.5 SAMPLE L-EXPRESSNET TRAINS
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CR2(i)= M x A+2 x'l:+2 x (i-l)* 0

where 'I: is the time it takes for a signal to make traverse the length of the bus and 0 is a time

such that

0 > max ['_ij / (i-j)[

where _ij represents the propagation time from terminal i to terminal j.

When the network first begins operation, the CR1 and CR2 counters are at zero, and

will remain so until the terminal detects a locomotive, as described above. However, unless

the network is somehow initialized, no locomotive will ever be generated, and therefore each

terminal is equipped with a third counter, CR3 that begins counting when the terminal is first

powered up, but reset by the detection of the locomotive. When a terminals CR3 counter

reaches a value given by

CR3 = MxA + 4 x'_ + 2 x (M-l) x0

it knows that the network is not initialized, and may generate a locomotive. The ftrst locomo-

tive is known as the "pilot". [BORG85]

4.6 Dismissals of Protocols by Cons

In this section, we will discuss why a class of protocols, or a particular protocol is

unsuitable for use in the ALS system.

4.6.1 Contention Protocols

Contention protocols are too slow and too unreliable in their data delivery for use on

the ALS. When few terminals need to use the medium, there are few collisions, and mes-

sages are very likely to arrive at their destinations very quickly. On the other hand, when

many terminals need to use the medium, there are many collisions, and therefore messages

may take a long time to reach their destinations, as their originating terminal sits out its
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backoff periods. Sincemost contentionprotocolswill only attempta finite numberof trans-

missionfor eachmessage,a greatdealof datamaybek,stduringhigh useperiods.

In the ALS system using smart or intelligent sensors,the time when the ALS is in

trouble is the time when the greatestnumberof sensorsand controllerswill needto commu-

nicate,andthetimewhencontentionprotocolsgive theirworstperformance.

4.6.2 Implicit Token Passing

Aside from being few commercially available systems using time-multiplexing proto-

cols, their synchronization requirements make them t:nsuitable for use on the ALS. If termi-

nals are dependent on an external clock, then many additional connections must be made to

it. If terminals each have internal clocks, these must all be synchronized to each other, which

is very difficult. Should a terminal's internal clock lose synchronization, it may ta3; to trans-

mit a message while another terminal is using the medium. In order to avoid this problem,

large delays must be inserted between transmissions to alleviate minor synchronization

problems. This detracts from network efficiency and therefore greatly limits the bandwidth of

time-multiplexing protocols.

4.7 Recommended ALS Protocols

In this section, we will explain why we feel that the MIL-STD-1553B is suitable for

the current ALS system. We will also discuss why we feel that NASA may wish to change

to a token passing or token passing hybrid to take advantages of developments in sensor

technologies, particularly "smart" and/or "intelligent" .;ensors.

4.7.1 MIL-STD-1553B

MIL-STD-1553B is the communications he:work being used on present launch sys-

tems, and therefore has the advantage of being prmen. Because it has already been used for

a number of applications, it is cheap and readily available. It is also very reliable. Any termi-
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nal on a MIL-STD-1553B bus,with theexceptionof the controller, may breakdown, and still

leave the network intact. The following sectionswill discuss MIL-STD-1553B's applica-

tion to currentandfuture technologies,asdescribedin section1.3.1.2of this report.

4.7.1.1 Present Sensor Technology

Obviously, a MIL-STD-1553B local area network can support present sensor tech-

nology. It may be desirable, however, to reconfigure the busses for greater efficiency and

reliability. For example, it would be desirable to modify MIL-STD-1553B for use on fiber-

optic cable, rather than the current twisted-pair medium. Fiber optic cable is lighter, and

because FDDI is being developed for the space station, space-qualified fiber will soon be

available. Also, the use of optical fiber would eliminate echo problems thus allowing multi-

ple stages to be connected on a single bus, rather than the current configuration of a separate

bus for each stage. This would make triple redundancy much cheaper to achieve.

4.7.1.2 MIL-STD-1553B Support of"Smart" Sensors

Should the ALS be implemented with smart sensor technology, multiple MIL-STD-

155313 busses for each stage should be able to handle the increased communications. This is

similar to existing avionics systems, such as the F-16, which uses two MIL-STD-1553B

busses for each wing. If, in order to perform trend analysis, certain sensor systems must

communicate with each other, those systems should be placed on the same bus. Otherwise,

their communications must be sent through the flight controller.

It is our opinion that this would not be the optimum system for use on an ALS using

smart sensors. Multiple busses means multiple bus controllers, all of which must be moni-

tored by the flight controller, greatly increasing its complexity. Also, if "intelligent" sensors

should be developed, this configuration would not support them well, for reasons described

below.
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4.7.1.3 MIL-STD-1553B Support of "Intelligent" Sensors

MIL-STD-1553B, being a command-response protocol, would not easily lend itself to

the distributed processing and control system maJ_dated by use of intelligent sensors.

Should an intelligent sensor system determine that an action must be taken, it must wait for

permission from the bus controller to give the proper instructions to actuators to perform the

action. If the action is urgent, permission may come too late.

4.7.2 FDDI

FDDI's primary advantage is speed. The 100 Mbit/second bandwidth of FDDI

should be fast enough to support all three levels of sensor technology as described below.

The synchronous and asynchronous frame types, as well as FDDI-I and FDDI-II systems

also make it quite versatile and adaptable to a variety of control schemes.

Although currently FDDI hardware is quite expensive, FDDI (SAFENET) is being

developed for the Navy and the space station, so the price should soon come down. Also,

since it is being developed for the space station, space-hardened versions of FDDI hardware

will soon be available. [COHN88/AWST88]

4.7.2.1 FDDI Support of "Dumb" Sensors

Again, the advantage here is speed. The pre_;ent system of a flight controller deman-

ding data from dumb sensors could be supported especially well by FDDI-II systems. The

flight controller terminal could act as the cycle master, using one cycle to instruct which of up

to 16 sensor systems should transmit their data and on which isochronous channel they

should transmit it. The next cycle could then pass through the ring, collecting the data and

carrying it back to the flight controller, which would then use a cycle to send instructions to

various mechanisms based on that data.

4.7.2.2 FDDI Support for "Smart" Sensors

A smart sensor system would be almost t',_e same as that for the dumb sensors,
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except that the flight controller should communicatewith fewer than 16 sensorsor mecha-

nisms at a time, thus leaving open a large token channel that smart sensorscould use to

reportresultsof self checksandtrendsin theirdata.

4.7.2.3 FDDI Support of "Intelligent" Sensors

In systems using intelligent sensors with distributed control, a non-FDDI-II system

would be preferable. FDDI's synchronous/asynchronous transmission features make it well

suited for distributed control. The synchronous transmission could be reserved for normal

operation of the ALS, with asynchronous transmission still available should problems arise

requiring more communication than usual. Since all terminals are on the same ring, all sen-

sors could easily communicate with each other, as well as to any mechanisms they may need

to send instructions to. This ease of communication between any two terminals on the ring

also makes FDDI weil-suited for distributed control.

4.7.3 The SEAFAC Protocol

While SEAFAC currently exists only on paper, with no available hardware to support

it, we nonetheless include it in this report to illustrate the desirability of an explicit token-

passing bus. Should NASA choose to develop its own protocol for the ALS, we believe that

it should develop an explicit token passing bus or a hybrid such as SEAFAC.

The SEAFAC protocol has excellent features for the use with all three (dumb, smart

and intelligent) sensors, as well as being suited for star and bus networks, the most fault-

tolerant topologies. SEAFAC's ability to dynamically prioritize terminals is particularly suit-

ed for a multi-stage launch system. For example, the terminals representing the third stage

of a three-stage launch vehicle will be of low priority during the initial phases of a launch, but

will increase in priority as the launch progresses. The SEAFAC scheduler has the ability to

place them "low" on a path, giving them low priority, and move them up as they become more

important. As stages drop off, their terminal can be removed from paths by the scheduler,
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saving it the time of having to checkand realize that they areno longer presentbeforemov-

ing on to thenext terminals.

4.7.3.1 SEAFAC Support of "Dumb" Sensors

Being a high-speed token passing protocol, S EAFAC is well suited for the case of

"dumb" sensors that produce only data, unable to categorize it as to its importance. The

SEAFAC scheduler can act as a flight controller, or follow the instruction of another terminal

acting as flight controller, and prioritize the sensors as to the importance of their data as

described above. The scheduler's ability to send instructions to either specific terminals or

broadcast to several terminals via the subaddress fields makes it well suited for the com-

mand/response set-up used by current dumb sensors acting as slaves to a flight controller.

4.7.3.2 SEAFAC Support of"Smart" Sensors

Should "smart" sensors capable of trend a_aalysis and self-checks be developed,

SEAFAC could still be used, since it has provisiors for any terminal, upon receiving the

token, to transmit a state-of-health message. Also, :he ability to dynamically prioritize ter-

minals proves useful. For example, if a terminal's self check shows that it may soon prove

unreliable, the scheduler can place it low on a path, and not waste channel time by giving it

the token very often. Also, if a terminal spots an important trend in its data, say data indicat-

ing an impending component failure, the flight controller may want to watch that terminal

more carefully than usual in order that it may take necessary precautions. The scheduler

would then put that terminal high on a path to insure that it receive the token often so that it

may we monitored closely.

4.7.3.3 SEAFAC Support of "Intelligent" Sensors

SEAFAC is also well suited for "intelligent" sensors capable of making decisions and

requiring an ability to send instructions to other components. SEAFAC is designed so that
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any terminal may know the stateof healthor may transmitor receivedata from anyother ter-

rninal on the network. Also, using the pre-defined sub-addresses, any terminal on the net-

work may send instructions to any other terminal, and thus SEAFAC could support a dis-

tributed control system mandated by the use of intelligent sensors.

4.7.4 SAE AE-9B High Speed Token Passing Bus

The AE-9B token passing bus system, like SEAFAC, has no commercially available

software to support it. Unlike SEAFAC, however, it is likely that manufacturers will soon

develop such hardware, whereas with SEAFAC, NASA would have to initiate development.

It has been demonstrated that a centralized system such as SEAFAC offers higher

throughput for a given data latency that for a "distributed" token passing bus such as AE-9B

[SPIES6]. However, AE-9B does offer the advantages of a token passing protocol, along

with the reliability and simplicity advantages of the bus architecture, and as stated above,

there will probably soon be commercially available hardware to support it.

4.7.4.1 AE-9B Support of"Dumb" Sensors

For the current level of sensor technology, AE-9B offers the advantage of speed, and

several user defined sub-addresses that a central flight controller could use to give com-

mands to other systems on the bus.

Also, terminals representing sensor systems providing more important data may be

given higher priority than others by giving them large THT reset values. Like SEAFAC,

these priorities may be changed during the course of operation.

4.7.4.2 AE-9B Support of "Smart" Sensors

Terminals capable of self-checks can take advantage of exit token feature. A terminal

that detects impending failure would simply issue an exit token, thus removing itself from the
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tokenpath.

Terminals serving sensorsystemscapable of performing trend checks may wish to

stayoff of the tokenpathuntil a trendworth reporting to the flight controller is spotted. That

terminal would then acceptthe tokenduring the next terminal insertionperiod (as described

in Section4.4.3.3).

4.7.4.3 AE-9B Support of "Intelligent" Sensors

Again, the advantage is the numerous sub-addresses available for user defined func-

tions. This easily lends itself to a distributed control system mandated by the use of intelli-

gent sensors. For example, upon receiving the token, terminals representing an intelligent

sensor system that has determined that an action must be taken may use the sub-addresses

to send instructions to an actuator. The sub-addresses may also be used to order other sen-

sor systems to send data so that a decision may be made.

4.7.5 Recommendations

The MIL-STD-1553B command response b_s should be sufficient to handle current

and smart sensor technologies. It is proven, cheap and readily available. We do, however,

recommend that the MIL-STD-1553B be upgraded to a MIL-STD-I773 system. MIL-STD-

1773 uses the same access protocols as MIL-STD-1553B, but its hardware has been

designed for use on optical fiber medium, rather th:m shielded twisted pair. Thus MIL-STD-

1773 has all the advantages of MIL-STD-1553B, with the additional advantages of optical

fiber, light-weight and lack of echo.

If an high speed system that can be implerr_ented as soon as possible is desired, then

FDDI is available. It is also designed for use on a light-weight fiber optic medium. It is

very reliable in terms of data latency and guarantee of delivery, and its virtual circuit capabili-

ties and synchronous/asynchronous make it attractive for use with present day, as well as
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future sensortechnologies. Its ability to dynamically assignbandwidthmakesit well suited

for multi-stagelaunchsystems.

If NASA is willing to developthe necessaryhardware, SEAFAC is the protocol best

suited for the advancedlaunchsystem. It's featuresallow it to supportboth centralizedand

distributedcontrol systems. It is designedfor useon the fault-tolerant and versatilestar or

bus topologiesrealizedby a light-weight fiber-optic medium. Its ability to dynamically prior-

itize terminalsmakesit particularlywell suitedfor multi-stagelaunchsystems.
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5.0 Perfomance Analysis

Inorder to determine the applicability of a given protocol to a system the protocol's

performance must be studied. One of the most important performance factors is average

delay. In the following sections offer load versus delay is plotted for several protocols. The

data points for these plots were obtained through computer simulation of the protocols and

from various studies of protocol performance.

5.1 Performance Analysis of Ethernet

The results in this section shown in Figures 52 and 5.3 were taken from the paper "A

Simplified Discrete Event Simulation Mode for an IEEE 802.3 Local Area Network" by

Sharon K. Heatley of the National Bureau of StandaJds [HEAT86]. They are the results of a

computer simulation of the IEEE 802.3 protocol standard, which has the same timing fea-

tures as Ethernet. A typical simulation timeline is shown in Figure 6.1. The protocol was

modeled using the following rules:

1: The arrival of packets at each terminal is a l:'oisson distributed random process

2: The propagation delay between any two stations is constant. This would be the

case for an Ethernet network on which the terminals are equally spaced along the

propagation medium.

3: After a collision, all terminals involved go into a back-off period, the length of

which is determined by the binary exponential ?ackoff algorithm.

and the following parameters:

1. Slot time=51.2 gseconds

2. Interframe gap (I)=9.6 [.tseconds

3. Jam size 0)=3.2 gseconds

4. Maximum propagation delay=25.6 gsecon_Js

5. 20% of packets 1024 bytes, 80% of packets 64 bytes
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5.2 Performance Analysis of HYPERchannel

This section gives the results of a HYPERcl-;annel simulation presented in the paper

"Measurement and Analysis of HYPERchannel Networks" by William R. Franta, and John

R. Heath. A detailed description of the HYPERchannet protocol can be found in section 4.

The HYPERchannel network simulated was composed of six terminals connected to a

1000 foot bus. Three of the terminals were desigr_ated "senders", and served only as data

sources. The remaining three terminals were designated "receivers", and served only to coll-

lect data. The "data" was generated by a thirty-two bit random number generator. Each

node was provided with a seperate "seed" for the ra1_dom number generator in order to avoid

the repeated transmission of identical frames.

Several simulations of over i10,000 frame _equence transfers yielded results within

2% of each other. Figures 5.4 and 5.5 show the average delay normalized to "transmission

period units", plotted against the percentage of 50 l_lbits/second of the offered load. Figures

5.6 and 5.7 show the throughput, i.e., the trunk utilization versous the offered load.

It was also observed that the effect of the w_it flip-flop was not what the designers of

HYPERchannel expected. Instead of preventing The higher priorities from "hogging" the

channel, it has reversed the priorities with every frame sequence. [FRAN84]

5.3 Performance Analysis Of FDDI

An in depth analysis of a system using a ring topology, FDDI protocol and 100

Mbit/sec rate is presented by Webster and Johnso_ [ JOHN85]. The analysis is conducted

through simulation, the rules which govern the system simulation are as follows:

I- Ring Structure: A dual-redundant ring structure _A&B) is modeled and the data is trans-

mitted in the opposite direction on ring A referenced t:9 ring B.

2- Station Count: The simulation can model an unlimited number of stations,

3- Distance Between Stations: The simulation can model a variable and unlimited physical

distance between the stations.
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4- Transmissionmedia: In the simulation,data is transmittedbetween the stationson opti-

cal fiber cable.

5- DataTransmissionRate:Thedatarateis takento beaselectablevariable.

6- Relation Of StationsTo Each Other:Each station communicateswith one uplink station

and one downlink station. In addition eachstation is capableof communicatingon either of

two redundantrings.

7- Elasticity Buffer: An elasticity buffer is presentin each station. This buffer is used to

maintainbit synchronization.

8- FrameType: Synchronousand asynchronousframe types are included in the simulation

model.

9- Free Token: In the simulation model the tree token consistsof 11 octets. An octet is

eightserialbits.

10- Frame Structure:In the simulation model a frame structure consistsof 20 octets. The

Start of FrameSequence,FrameControl Field, Address Fields, Frame Check Sequence,and

End Of FrameSequencearepresentin theframe. An information field consistingof no more

than4488octetsis presentin theframealso.

11- Address Recognition: In the simulation each station is provided with a unique address.

Each station is capable of recognizing its own addresswhen present in the destination

addressfield of aframe.

12- FrameCopied Indicator: This indicator is set by the simulator to indicate the frame was

copiedinto theaddressedstation.

13- Error Detected Indicator: This indicator is set by the simulator to indicater a detected

transmission error.

14- Valid Transmission Timer: This timer is needed if fault conditions are to be injected in

the simulator.

15- Target Token Rotation Time: The (TTRT) is set in the simulator through negotiation as

part of ring initialization.
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16-Token RotationTimer: The (TRT) is usedin the ,,imulatorfor ring schedulingand serious

ring problemdetection.Eachstationhasits own (TRT).

17- Token Holding Timer: The (THT) controls the transmissionof asynchronousframes.

Eachstationhasits own (THT).

18- SynchronousTimer: The synchronoustimer is usedby the simulator to control the trans-

missionof synchronousframes. Eachstationhasits mansynchronoustimer.

19- CaptureOf Token:According to a set of rules, a stationthat hasframesqueuedfor trans-

missioncapturesatoken.

20- Token Passing:In the model the token is passedafter all queuedframes at token holding

stationhavebeentransmitted.

21- FrameRemoval:The stationwhich transmits,in the simulationmodel, a frame is respon-

sible for itsremoval from thering.

22- TransmissionQueue:The numberof frameswhich may be containedin this queueis sup-

pliedby theuserto thesimulator.

23- ReceiveBuffer: A receivebuffer is usedin the model to copy framesfrom physical layer

to the link layer. This bufferis containedin the link layer.

24- Frame Retransmission:The network layer in the simulation model has the ability to

rescheduletransmissionof a refusedframe. A refu_edframeis a frame returnedto the sen-

ding stationwith its FrameCopied bit not setor with lheError Detectedbit set.

25- Data Buffering: The network layer in the simulatorprovidesbuffering for both transmis-

sionandreceptionof framesandmessages.

26- Received MessageBuffer Space:In the simulation model, a user specified numberof

octetsof storageexistateachstation.

27- Transmit MessageBuffer Space:A user def'mcd number of octets of buffer space will

exist at the network layer of the simulation model to store messages for transmission which

originated in the load layer of the model.

28- Long Transmit Messages: In order to have a _mccessful transmission, a message which
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is longer than the maximum information field lengthwill be brokendown into framesbefore

transmission.

29- Receive Messages:Messageswhich have been completely loaded into the message

buffer spacewill bepassedto theloadlayerin the simulationmodel.

30- Message Acknowledgment: Messageacknowledgmentis an option provided by the

model. It is a receipt-of-messageacknowledgmentwhich is sent from the receiving station

to themessage-transmittingstation.

31- FrameRejection: In the simulation model a receiving stationcan reject all framesfrom a

transmittedmessageuntil spacebecomesavailablein its physicalbuffer space.

32- Ring Recovery:Ringrecoveryis modeledin thesimulationby ashortdelayof time.

33- MessageGeneration:The load layer of the simulation model is responsiblefor message

generation. The load layer, for example, is responsiblefor the generationof messagetype,

length,destination,inter-arriv',.dtimeandpriority.

34- Load Types: At each station, in the model, the load is modeled as three distinct sub-

loads. The first sub-load consistsof short, control-type messagesor load-level acknowl-

edgments. The secondsub-load consistsof long, data-type synchronousmessages. The

third sub-loadconsistsof long, data-typeasynchronousmessages.

35- MessageDelivery To Load Layer: The transportationof a messagefrom the network

layer to the load layer of the model startsafter a completemessagehas beencopied into the

networklayer's receivemessagebuffer.

EXAMPLE ONE :

Simulation results on the performance of FDDI are presented in a paper by Johnson

[JOHN88]. The ring configuration used to obtain the results is presented in Table 5.1. The

system is considered to be homogeneous and the traffic is taken to be asynchronous. Each

node in the simulated network is assumed to generate frames at the same specified mean

arrival rate. The Interarrival times for frames at each node is assumed to be exponentially
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TABLE 5.1 RING CONFIGURATION FDDI
EXAMPLE ONE

PARAMETER VALUE

Number of Nodes 20

Distance between Nodes 30 meters

T_Opr 40 milliseconds

Header Size 4000 bytes

Frame Size 40 bytes
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distributed. In a system using FDDI, a timed-token-rotation protocol, the ring initialization

process includes a negotiation between all the stations in the system. As a result of this

negotiation a value for the target token rotation time (TTRT) is determined. (TI'RT) speci-

fies the expected token rotation time in the network. Each station requests a value that is

fast enough to support its synchronous traffic needs. The shortest requested time is

assigned to (T Opr). The value of (T_Opr) specifies the expected token-rotation time and it

is a well defined ring parameter. The main results from the simulation model for this example

are the following:

Average Frame Delay :

The delay measured in the simulation is the time from generation of the frame at the

source node to reception of the frame at the destination node. Figure 5.8 shows the average

frame delay versus offered load.

Channel Utilization :

The utilization of the channel as function of offered load is presented in Figure 5.9.

Utilization increases linearly as a function of the offered load until the network is saturated.

For an offered load of 99.9% or more the utilization function becomes parallel to the X- axis.

Queue Lengths :

As soon as the frames are generated at a given node they are placed into the trans-

mission queue, they remain there until they are transmitted on the channel. For our example,

the number of frames in queue vs. offered load is shown in Figure 5.10. In this figure both

average and maximum queue lengths as a function of offered load are presented. The maxi-

mum value given is the maximum over all the nodes, and since in our example the network is

assumed to be homogeneous the average number of frames in the transmission queue at the

individual nodes are all considered to be approximately the same.

From Figure 5.8 and Figure 5.10, at an offered load of 98% the average frame delay is

about 5000 microseconds and the maximum number of frames in queue is 7. This information

suggests that when the offered load is as high as 98% the ring is able to service all the traffic
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satisfactorily.

Average Token-Rotation Time :

For this example the time required for the token to rotate around an empty ring is 15

microseconds(propagation delay). It has been proven that the maximum token-rotation time

is 2x(T_Opr) [SEVI87], also it has been proven that the average token-rotation time is less

than or equal to (T_Opr) [Sevick & Johnsonl. Figures 5.11a and 5.11b show the average

token-rotation time as a function of the offered load. It can be seen from the mentioned fig-

ures that the average token-rotation time approaches the value of (T_Opr) [in this example

(T_Opr) = 40 microseconds] only when the offered load exceeds the capacity of the ring.

Waiting Period For A Usable Token :

The amount of time a node must wait to be serviced when it has one or more frames

queued for transmission is another measure of FDDI responsiveness. For the example con-

sidered, Table 5.2 illustrates both average and maximum values of waiting time for a range of

offered load.

In the next example synchronous traffic is taken in consideration. The example and

the result of the analysis are taken from a paper by Marjory J. Johnson [JOHN88].

EXAMPLE TWO :

In this second example a ring configuration, presented in Table 5.3, is simulated

using the simulation model presented by Webster and Johnson [ JOHN85]. In this configura-

tion the asynchronous nodes generate asynchronous traffic only and the synchronous nodes

generate synchronous traffic only. In this example, a synchronous node generates one frame

every 6750 microseconds. On the other hand the interval between consecutive asynchronous

frames generated at different asynchronous nodes is staggered. It is desired that any given

frame at a given synchronous node should be transmitted before the queueing of the next

frame at the same node for transmission. Each synchronous node is allocated synchronous

bandwidth to transmit exactly one synchronous frame each time it receives the token, this
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TABLE 5.2 FDDI WAIT FOR USABLE TOKEN

Offered Load Average Wait Maximum Wait

(% of capacity) (microseconds) (microseconds)

10 30 509

20 47 968 :

30 76 1328

40 133 1913

50 151 2189

60 309 5723

70 421 4800

8O 650 6097

90 1367 '9469

95 2348 13244

105 30246 38493
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TABLE 5.3 RING CONFIGURATION FOR FDDI
EXAMPLE TWO

PARAMETER VALUE

Number of Synchronous Nodes 15

Number of Asynchronous Nodes 5

Interarrival Time Between Synchronous Frames 6750 _S

Distance Between Nodes 30 meters

T_Opr 6750 _S

Length of Synchronous Access Time Interval 6750/&S

Synchronous Bandwidth Allocation 75%

144



condition is the reason why 75% of the value of ('F_Opr) is allocated for the total syn-

chronousbandwidth.

Synchronous Service :

During the simulation, the synchronous load w:ts increased until the total offered load

was 95%. The ring performance was satisfactory for this range of offered loads. This is

because even at this high level of offered load all synchronous frame delays are less than

6750 microseconds. On the other hand when the asynchronous load was increased so that a

total offered load of 120% the resulting ring performance was not satisfactory. Approximate-

ly 3.2% of the synchronous frames experienced delays that exceeded 6750 microseconds.

Figure 5.12 illustrates a histogram of synchronous fra_ne delays for node 12. Delays greater

than 6750 microseconds are shown to occur in clusters, this type of delay for one frame will

cause frames to back up in the transmission queue. Since in this example the ring configura-

tion allows only one synchronous frame to be transmitted during each token rotation, since it

has been mentioned the token-rotation time in a saturated ring approaches (T_Opr), and

since an additional frame is added to the queue every (T Opr) microseconds, it may take

several token rotations before the queue becomes empty again. From Figure 5.12, node 12

of this example experiences five clusters of excessive delays. These clusters can be elimi-

nated by purging a synchronous frame pending transmission when a new synchronous frame

becomes queued for transmission at this node. As a result of this purging technique only five

synchronous flames will be lost from node 12, the ,'est of the frames will experience delays

within the acceptable bound.

EXAMPLE THREE ;

In this example a ring configuration of 20 homogeneous nodes transmitting asyn-

chronous frames only at an offered load exceeding the ring capacity (saturation) is simulat-

ed. The " Fairness of Access for Asynchronous Tratfic" is the only outcome of concern from

this experiment. The result is shown in Figure 5.13 in this Figure a histogram of the number
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of flames transmitted over a period of 10 seconds by each node in the ring is presented. The

largest number of frames transmitted by a single node was 1557 and the smallest number of

frames transmitted by a single node was 1530. The ring operation in this example is time

division multiple access (TDMA), with a six-frame time slot for each node during each token

rotation. This represents the most efficient channel utilization in a saturated ring.[JOHN88]

EXAMPLE FOUR :

In Marjory Johnson's " Proof That Timing Requirements Of The FDDI Ring Protocol

Are Satisfied. IEEE Trans. on Com. Vol. 35 No. 6, June 1987 " a realistic situation is pre-

sented. It is given in this presentation that the propagation time for fiber optic media is 5085

ns/Km, the latency per physical connection is 600 ns, the token transmission time is 0.00088

ms, and the maximum transmitter idle time after token capture is 0.0035 ms. Using the infor-

mation given in Table 5.1 for this example also, the timing values are as follows:

1- Total propagation delay around the ring = (5085 x 20 x 30 / 1000 ) ns

2- Total latency due physical connections = (600 x 20) ns

3- Maximum overhead due to token transmission time = (0.00088 x 20) ms

4- Maximum overhead due to transmitter idle time after token capture = (0.0035 x 20) ms

5.4 Comparative Results from Analytic and Simulation studies of

CSMA/CD & Ring Protocols

1- Comparison between the delay characteristics of the token ring, slotted ring,

the register insertion, and CSMA/CD protocols : [ Liu, M. T.; Hilal, W.; and

Groomes, B. H. " Performance Evaluation of Channel Access Protocols for Local Computer

Networks." Proceedings, COMPCON 82 Fall, 1982.]

i- Conditions under which the comparison was conducted:

- Normalized transmission media = 0.005

- Register insertion ring packet are removed by the destination station.
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- Slottedring andTokenring packetsareremovedbe thesource.

2- Resultsareshownin Figure(1).

3- Thefollowing canbeconcludedfrom theresults:

- At light loads,thetokenring suffersgreaterdelay_:hanCSMA/CD.

At heavy loads the token ring protocol suffers less delay than CSMA/CD. At heavy

loadsthetokenring's delayappearsto bestable.

- Tokenring delaycharacteristicsarebetterthanthztof slottedring at a givenoffer load.

Slotted ring has the poorerperformance. The reasonfor this may be that the overhead

occupiesa great portion of the used small slots and/or the time neededto pass the empty

slots aroundthe ring is significant. The passingof tl_eempty slot in this topology is usedto

guaranteefair bandwidthin thesystem.

2- Comparison between the delay

CSMA/CD protocols : [ Okada H.;

characteristics of the token ring and

Yama_noto T.; Nomura Y.; Nakanishi Y.

"Comparative Evaluation Of Token Ring And CSM_/CD Medium Access Control Protocols

In LAN Configurations." IEEE 1984.]

1- Conditions under which the comparison was made:

- Channel Capacity = 5 Mbps.,

- Number of nodes used = 50.

- Maximum distance covered = 1.0 Krn.

- Packet length = 1000 bits.

- Repeat delay at each node = 8 bits.

- Token header length = 24 bits.

- Maximum length of contention to control = 7. ( CSMA/CD binary exponential back-off)

2- Results are shown in Figure (2).

3- The following can be concluded from the results:

At light throughput values, CSMA/ CD protocol experiences less delay than the token
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ring protocol.

- At heavy throughputvalues, the token ring protocol experiencesless delay than the

CSMA/CD protocol.

- For Values of 0.5 - 0.8 normalizedthroughput,the rate of changein the token ring

protocoldelay is lessthanthatof theCSMA/CDprotocol.

5.5 Performance Comparisons for ALS Parameters

One of the first parameters to be considered in designing a communications system is

the total offered load. This value should be commpared with the channel capacity C of appli-

cable protocols. A simple method to find the upper bound for the average number of bits per

second a node in a K node homogeneous system can output with a given protocol is

described below.

Given K nodes and S samples per second, let N be the number of bits per sample that

a node outputs,. Therefore the bound on N can be calculated using the following relation:

N (bit/sample) x S (sample/see) x K (number of nodes) < C bit/see

For an example assume a 100 megabit FDDI system with 10 nodes each producing N

bits when sampled and all sampled 100 times a second. Therefore the bound on N can be cal-

culated using the following relation:

N (bit/sample) x 100(sample/sec) x 10 < 10 8 bit/see

or N < 100 x 103 bit/sample.

Therefore for a successful transmission in a system using a 100 Mbit/sec FDDI protocol

the output of a node must not exceed 1 Mbit/sample. Table 5.4 shows a related example

using a ring configuration of 10 nodes.

Using this type of analysis the allowable node traffic for a ten node system is presented
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for MIL-STD-1553B,EthernetandHyperchannelin Table5.4.

TABLE 5.4 : ACCEPTABLE NODE OU'IPUT FOR HOMOGENEOUS
10 NODE SYSTEM

EACH NODE
AVERAGE OUTPUT
IN BITS/SAMPLE

(100 SAMPLES/SEC)

0.16 K

1.6 K

16 K

160 K

1.6 M

A 1 Mbit/sec
MIL-STD- 1553B
WILL SUPPORT

YES

NO

NO

NO

NO

A 10 Mbit/sec
ETHERNET
WILL SUPPORT

YES

YES

NO

NO

NO

A 100 Mbit/sec
FDDI
WILL SUPPORT

YES

YES

YES

NO

NO

Using this type of analysis and the information presented previously Table 5.5 is con-

structed to indicate the appropriate protocols and average delay for offered loads of 100 kilo-

bits/sec (present vehicles), 22.4 megabits/second (Boeing Air Force study) and 55

megabits/second (Mississippi State University's proposed future vehicle load study with

case 2 radar). The delays are not given exactly because the delays are very sensitive to

average packet size and for the two tings the delays also depend on the number of stations

and distance between stations.
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TABLE 5.5 : AVERAGE DELAY FOR LOADS OF INTEREST

FFERED

MIL-STD-1553B

PRESENT
AVIONICS
LOADS

100 Kbit/sec

ETHERNET

AF/Boeing
Estimates
NO RF/RADAR
INPUTS

23 Mbit/sec

MSU Estimates
Assumes RF and
CASE 2 RADAR
INPUTS

55 Mbit/sec

HYPERCHANNEL

PRONET - 80

FDDI

YES

YES

YES

YES

Delay

N/A

<lms

<lms

<lms

<lms

NO

NO

YES

YES

YES

* WMCC Within Maximum Channel Capacity

Delay

<lms

<lms

<lms

WMCC

NO

NO

NO

YES

YES

I Delay

<lms

<lms

From the table it can be seen that all of the protocols we have studied are applicable

to the present generation of vehicles in terms of delay. As avionics data rates grow a change

to protocols able to serve these higher rates. The products currently available to serve these

high rates are token passing rings such as the Pronet - 80 and FDDI.
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6 ALS Recommendations

As shown in section 1 future local area networ_:s for launch vehicles will be required

to service missions with data rates from 25 to 55 megabits/second. In order to keep costs

down these systems should use commercially available standard parts wherever possible.

Several high speed protocols presented by the Society of Automotive Engineers would be

applicable to this system. These protocols are the SAE-AE/9B HSRB and SAE-AE/9B

LTPB. These protocols were developed for initial implementation at 50 megabit/second with

the ability to increase speed as faster hardware becomes available. These protocols suffer

from a lack of available hardware at this time but both Boeing and Lockheed are working on

implementations. Other protocols that are applicable are Pronet-80 and the FDDI protocol.

This FDDI protocol is a 100 megabit/second token passing ring that has been selected by

NASA for use on the space station and by the Navy for use on ships and at shore facilities.

This protocol is supported in hardware by Martin-Marrieta and Honeywell. Many other com-

panies are beginning to support this protocol. Greg Chesson of Protocol Engines Inc/Silicon

Graphics Inc. is developing Express Transfer Protocol (XTP) to efficiently use the FDDI sys-

tem. This lightweight ptotocol will be implemented ii_ hardware and should allow an effective

trhoughput of 80 megabits/second on a 100 megabit,'second FDDI system. This protocol is

being developed with military applications in mind and should soon be available.

As shown in section 2 a bus architecture would be most suitable for a launch vehicle

with a separate LAN serving each stage. The MIL-STD-1553B protocol should be able to

service the next several launch vehicles with a possible move to MIL-STD-1773 for higher

data rates. When these protocols' abilities are e:_ceeded then SEAFAC or SAE-AE/9B

would be the next protocols to consider. If these pIotocols still do not have hardware avail-

able when their performance is required then a change to a high speed token ring such as

FDDI will be necessary. This protocol is already well supported and should be thoroughly

tested for reliability by the time it is needed.
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Appendix A Local Area Network Comparison

A.1 Comparison Tables

In the following pages comparisons are made between many commercially available

LANs. Such comparisons are made in access type, data rate, maximum number of nodes,

and the maximum length of the LAN considered.[Data sources]

PRgOI_I)[NG PAGE BLAblI( BlOT FILMED

157 f



TABLE A.I LANs COMPARISON

COMPANY & LAN
NAME

AMECOM

Government / Military
UBITS (Universal
Bus Information

Transfer System)

APOLLO COMPUTER
DOMAIN Distributed

Opreating Multi-Access
Network

Token

Passing

CSMA / CD

X

X

CSMA

APPLE COMPUTER
AppleNet X

APPLITEK X X
UniLINK

CODEX X
4000 Series LAN

COMPLEX SYSTEM
XLAN X

X

COMPUTER
AUTOMATION
COMMERCIAL
SYSTEMS DIVISION

SyFAnet

X

X

CONCORD DATA
SYSTEMS
Token / Net

CONTEL
INFORMATION
SYSTEMS
ConTelNet

CORVUS SYSTEM
Corvus Omninet

CSMA / CA

X

Other
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TABLE A.1 CON]INUE

COMPANY & LAN
NAME

CR COMPUTER
SYSTEMS
X-Net

DATA GENERAL
ZODIAC Network Bus

DATAPOINT
ARCnet

DAVONG SYSTEMS
MultiLink

THE DESTEK GROUP
DESNET

DEVELCON
ELECTRONIC
Develnet

DIGITAL EQUIPMENT
DEC Ethernet/dataway

FOX RESEARCH
10-NET

GATEWAY COMM.
G/NET

GENERAL TELENET
ETHERCOM

GOULD
MODWAY

HARRIS
HNET

Campus / Work Group

Token

Passing

X

X

X

CSMA / CD

X

CSMA CSMA / CA

X

X

Other

X

X

X

X

X
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TABLE A.1 CONTINUE

COMPANY & LAN
NAME

IDEAS
IDEAS LAN

INTECOM
LANmark

INTERACTIVE
SYSTEM / 3M
ALAN

VEDIODATA LAN /I

INTERPHASE CORP.
LCN 5180

INTERSIL SYSTEMS
GEnet

MICOM SYSTEMS
INSTANET

NCR CORP.
Mirlan

NESTAR SYSTEMS
PLAN 20 / 30 / 40

NETWORK SYSTEMS
HYPERbus
HYPERchannei

NOVELL, INC.
NETWARE / S

ORCHID TECH.
PCNET

PERCOM DATA CORP.
Precomnet

PRAGMATORNICS
TIENET

Token

Passing

X

X

X

CSMA / CD

X

X

X

X

CSMA CSMA / CA

X

X

X

X

Other

X

X

X
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TABLE A.1 CONTINUE

COMPANY & LAN
NAME

PRIME COMPUTER
RINGNET

PROLINK CORP.

PROloop

PROTEON, INC.
ProNET

RACAL-MILGO

planet

SCIENTIFIC DATA
SDSNET

SIECOR CORP.
Fiberlan-Net 10

STANDARD DATA
Disc-less Network

STRATUS COMPUTER
StrataLink

SYTEK, INC.
LocaiNet

TECMAR, INC.
ComNet

UNGERMANN-BASS

Token

Passing

X

X

X

CSMA / CD

X

X

X

X

X

X

X

CSMA

X

CSMA / CA

Net / One

WANG LAB.

WangNet

WESTERN DIGITAL
NetSource / PC-LAN

XEROX CORP.

Ethernet

X

Baseband

X

X

Broad-
band

Other

X
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TABLE A.I CONTINUE

COMPANY & LAN
NAME

XYPLEX, INC.

The XYPLEX System

NBI, INC.

MARTIN
MARIETTA

HONEYWELL

Token

Passing

X

FDDI

X

FDDI

CSMA / CD

X

X

CSMA CSMA / CA Other
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TABLE A.2 LANs COMPARISON

COMPANY & LAN
NAME

AMECOM

Government / Military
UBITS (Universal
Bus Information

Transfer System)

APOLLO COMPUTER
DOMAIN Distributed

Opreating Multi-Access
Network

BIT RATE

160 Mbps

12 Mbps

MEDIUM

Twisted
Pah &

Optical
Fiber

Coaxial Cable

CONNEC-
TIONS

16000

Several
100's

MAX.
DISTANCE

1000 ft.

lKm.
Between

Nodes

APPLE COMPUTER

AppleNet 1 Mbps 128 2000 ft.

APPLITEK 10 Mbps Optical Fiber & 1000-4000 2.5-30 Km
UniLINK Coaxial Cable

CODEX 10 Mbps Coaxial Cable 238 500 meters
4000 Series LAN

COMPLEX SYSTEM 1 Mbps Twisted Pair 10000 ft.
XLAN

COMPUTER
AUTOMATION
COMMERCIAL
SYSTEMS DIVISION

SyFAnet

CONCORD DATA
SYSTEMS
Token / Net

Coaxial Cable

Coaxial Cable

Coaxial Cable

Twisted Pair

CONTEL
INFORMATION
SYSTEMS
ConTeiNet

3 Mbps

5 Mbps

64

1000

Unlimited

64

2 Mbps
10 Mbps

1 MbpsCORVUS SYSTEM
Corvus Omninet

3000 R.

25 miles

5 miles

4000 _.
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TABLE A.2 CONTINUE

COMPANY & LAN
NAME

CR COMPUTER
SYSTEMS
X-Net

DATA GENERAL
ZODIAC Network Bus

DATAPOINT
ARCnet

DAVONG SYSTEMS
MultiLink

THE DESTEK GROUP
DESNET

DEVELCON
ELECTRONIC
Deveinet

BIT RATE

GATEWAY COMM.
G/NET

14.746 Mbp:

2 Mbps

2.5 Mbps

2.5 Mbps

2 Mbps

24 Mbps

MEDIUM

Twisted Pair

Coaxial Cable

Coaxial Cable

Coaxial Cable

Coaxial Cable

Optical Fiber

Twisted Pair

CONNEC-
TION

255 sites
each 2032

nodes

32

255

255

> 350

240 lines

DIGITAL EQUIPMENT 10 Mbps Coaxial Cable 1024
DEC Ethernet/dataway Twisted Pair

FOX RESEARCH 1 Mbps Twisted Pair 32
10-NET

1.43 Mbps Coaxial Cable 255

Coaxial CableGENERAL TELENET 10 Mbps 1000
ETHERCOM

GOULD
MODWAY

HARRIS
HNET

Campus / Work Group

1.544 Mbps

10 Mbps
/ 1 Mbps

Coaxial Cable

Coaxial Cable

256

254
Per
Channel

(campus)

MAX.
DISTANCE

2.5 miles

1 mile

4 miles

20000 ft.

2 Km.

2.8 Km.

2000 ft.

7000 ft.

15000 ft.

5000 ft.
for work

group
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TABLE A.2 CONTINUE

COMPANY & LAN
NAME

IDEAS
IDEAS LAN

INTECOM
LANmark

INTERACTIVE
SYSTEM/3M
ALAN

BIT RATE

1.544 Mbps

10 Mbps

5 Mbps
2.5 Mbps

MEDIUM

Coaxial Cable

Twisted Pair

Coaxiat Cable

CONNEC-
TIONS

8192
devices

2000 per
channel

MAX.
DISTANCE

Function of

topology

10 miles

VIDEODATA LAN/I

INTERPHASE CORP.
LCN 5180

INTERSIL SYSTEMS
GEnet

MICOM SYSTEMS
INSTANET

2 Mbps

IMbps

1.544 Mbps

Twisted Pair

Coaxial Cable

Twisted Pair

255

2000 per
channel

30000 ft.

1 mile

NCR CORP.
Mirlan

NESTAR SYSTEMS
PLAN 20 / 30 / 40

NETWORK SYSTEMS
HYPERbus

HYPERchannel [H.C]

NOVELL, INC.
NETWARE / S

ORCHID TECH.
PCNET

PERCOM DATA CORP.
Precomnet

PRAGMATORNICS
TIENET

1 Mbps

2.5 Mbps

10 Mbps
50 Mbps
[H.C]

12 Mbps

1 Mbps

1 Mbps

1 Mbps

Coaxial Cable

Coaxial Cable &

Fiber Optic

Twisted Pair &
Coaxial Cable

Coaxial Cable

Twistet_ Pair

Coaxial Cable

255

Unlimited

65

64000

254

200

4 miles

5000 ft.
10000 ft.

[H.C]

3000 ft.

7000 ft.

10000 ft.

5 miles
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TABLE A.2 CONTINUE

COMPANY & LAN
NAME

PRIME COMPUTER
RINGNET

PROLINK CORP.

PROloop

PROTEON, INC.
ProNET

RACAL-MILGO

planet

SCIENTIFIC DATA
SDSNET

SIECOR CORP.
Fiberlan-Net 10

STANDARD DATA
Disc-less Network

STRATUS COMPUTER
StrataLink

SYTEK, INC.
LocalNet

TECMAR, INC.
ComNet

UNGERMANN-BASS
Net / One

WANG LAB.

WangNet

WESTERN DIGITAL
NetSource / PC-LAN

XEROX CORP.
Ethernet

BIT RATE

10 Mbps

10 Mbps

10 Mbps
80 Mbps

10 Mbps

1 Mbps

10 Mbps

3 Mbps

12.5 Mbps

1.5 Mbps

10 Mbps

5 Mbps
10 Mbps

12 Mbps

1 Mbps

1.5 Mbps

MEDIUM

Twisted Pair

Coaxial Cable

Twisted Pair,
Coax, & O.F.

Coaxial Cable

Coaxial Cable

Optical Fiber

CONNEC-
TIONS

247

62

255

5OO

255

4000

Coaxial Cable & 255
Optical Fiber

Coaxial Cable 255

Coaxial Cable 24000

Coaxial Cable

Coaxial Cable &

Optical Fiber

Coaxial Cable

Coaxial Cable

36000

62535

254

1024

MAX.
DISTANCE

750 fl. be-

tween nodes

350 meters

node to node

.1-10 Km.

950 ft. be-

tween taps

1000 meter

2.5 Km.

75 Km.

25 miles

50 Km.

2800meters

4 miles

10000 ft.

1.5 miles
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TABLE A.2 CONTINUE

COMPANY & LAN
NAME

XYPLEX, INC.

The XYPLEX System

MARTIN
MARIETTA

HONEYWELL

BIT RATE

1 Mbps

100 Mbps

100 Mbps

MEDIUM

Coaxial Cable

FIBER OPTICS

FIBER OPTICS

CONNEC-
TIONS

255

5OO
Stations

MAX.
DISTANCE

6 miles

100 Km. Ring

Circumfere-
nce
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TABLE A.3 LANs COMPARISON

COMPANY & LAN
NAME

AMECOM

Government / Military
UBITS (Universal
Bus Information

Transfer System)

APOLLO COMPUTER
DOMAIN Distributed

Opreating Multi-Access
Network

TOPOLOGY

BUS

BUS

GATEWAYS USED

OSI Level 4 gateways

IBM gateways

APPLE COMPUTER BUS Ethernet gateways
AppleNet

APPLITEK BUS BSC; SDLC; HDLC;.X.25
UniLINK gateways

CODEX BUS
4000 Series LAN

COMPLEX SYSTEM BUS
XLAN

COMPUTER
AUTOMATION
COMMERCIAL
SYSTEMS DIVISION

SyFAnet

BUS

BUS

BUS

CONCORD DATA
SYSTEMS
Token / Net

CONTEL
INFORMATION
SYSTEMS
ConTelNet

CORVUS SYSTEM
Corvus Omninet

SNA; X.25 gateways

X.25 gateways

BUS SNA gateways
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TABLE A.3 CONTINUE

COMPANY & LAN

CR COMPUTER
SYSTEMS
X-Net

DATA GENERAL
ZODIAC Network Bus

DATAPOINT
ARCnet

DAVONG SYSTEMS
MultiLink

THE DESTEK GROUP
DESNET

DEVELCON
ELECTRONIC
Develnet

DIGITAL EQUIPMENT
DEC Ethernet/dataway

FOX RESEARCH
10-NET

GATEWAY COMM.
G/NET

GENERAL TELENET
ETHERCOM

GOULD
MODWAY

HARRIS
HNET

Campus / Work Group

TOPOLOGY

BUS

BUS

BUS

BUS

BUS

BUS

BUS

BUS

GATEWAYS USED

BSC; HDLC; X.25; X.21;
SNA / SDLC gateways

X.25 gateways

SNA; HDLC; X.25; TLX;

TWX gateways

Ethernet gateways

X.25; Ethernet

gateways

SNA; Ethernet; DECNet
gateways

BSC; SDLC; HDLC; SNA;
Ethernet gateways

Ethernet gateways

BUS

BUS

MODBUS; ADCE gateways

SNA; 2780 / 3780 gateways
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TABLE A.3 CONTINUE

COMPANY & LAN

IDEAS
IDEAS LAN

INTECOM
LANmark

INTERACTIVE
SYSTEM / 3M
ALAN
VIDEODATA LAN/I

INTERPHASE CORP.
LCN 5180

INTERSIL SYSTEMS
GEnet

MICOM SYSTEMS
INSTANET

NCR CORP.
Mirlan

NESTAR SYSTEMS
PLAN 20 / 30 / 40

NETWORK SYSTEMS
HYPERbus

HYPERchannel [H.C]

NOVELL, INC.
NETWARE / S

ORCHID TECH.
PCNET

PERCOM DATA CORP.
Precomnet

PRAGMATORNICS
TIENET

TOPOLOGY

BUS

STAR

BUS

BUS; STAR

BUS

UNCONSTRAINED

BUS

BUS

BUS

STAR

BUS

BUS

GATEWAYS USED

BSC; SDLC; X.25 gateways

Ethernet; T-I; 3270 gateways

TTY gateways

SDLC; HDLC gateways

DECNet gateways

X.25 gateways

IBM; Telex server
gateways

Link adapter to carrier facilit-
ies; Network adapters for
CPU / CPU transfer gateways

SNA; Ethernet; Omninet

gateways

Ethernet; IBM 3270 gateways

BSC; SDLC gateways
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TABLE A.3 CONTINUE

COMPANY & LAN

PRIME COMPUTER
RINGNET

PROLINK CORP.

PROloop

PROTEON, INC.

RACAL-MILGO

planet

SCIENTIFIC DATA
SDSNET

SIECOR CORP.
Fiberlan-Net 10

STANDARD DATA
Disc-less Network

STRATUS COMPUTER
StrataLink

SYTEK, INC.
LocaiNet

TECMAR, INC.
ComNet

UNGERMANN-BASS

TOPOLOGY

RING

RING

RING

RING

BRANCHING NON
ROOTED TREE

BUS; STAR

BUS

RING

BUS

BUS

BUS

GATEWAYS USED

Access to most standard

protocols ; X.25 gateways

BSC; SDLC gateways

HDLC; X.25; IBM; TCP/IP;
DECNet gateways

Ethernet gateways

X.25; Ethernet gateways

HDLC; SDLC; BSC
gateways

X.25; BSC; Ethernet

gateways

Ethernet; V.35 gateways
Net / One

WANG LAB.

WangNet

WESTERN DIGITAL
NetSource / PC-LAN

XEROX CORP.
Ethernet

BUS

RING

BUS

Wang Data Switch; Remote
microwave; Satellite gateways
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TABLE A.3 CONTINUE

COMPANY & LAN

XYPLEX, INC.

NBI, INC.

MARTIN
MARIETTA

HONEYWELL

TOPOLOGY

BUS

BUS

RING

RING

GATEWAYS USED
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A.2 Access Time

Access time is the time required for a node in a local area network to gain control of

the transmission medium so that the node may complete transmission of its packet. It is

possible, in a ring topology implementing a token passing protocol, to set the maximum

bound on the access time. On the other hand setting the maximum bound on the access time

for a contention protocol is not possible because any packet may suffer a collision.

A.3 Network Length Constraints

The physical separation between two nodes co_mected via a link in a given local area

network has upper and lower bounds. Such bounds are functions of the characteristics of the

transmission medium being used, the power level in the transmitted signal, the receiver

dynamic characteristics, and coupling losses.

A.3.1 Timing due to Propagation Delay

In both coaxial and twisted pair medium the propagation delay is a function of the

medium's propagation constant. The propagation constant is a complex function and it is

composed of two parts, a real part called the atter:_uation constant and an imaginary part

called the phase constant. The attenuation constant contributes to the manor in which the

transmission medium affects the magnitude of a signal propagating through it, and the phase

constant contributes to the manner in which the transmission medium affects the phase of

the signal propagating through it.

In general, propagation through an optical fiber medium is due to different modes, and

every mode has its own propagation constant. The propagation constant has different magni-

tudes for different modes, hence different propagation delays. This phenomena in optical

fiber results in the receiver in a system with many r_odes ( multimode optical fiber ) receiv-

ing many different replicas of the transmitted signal spread over a time period corresponding

to the fastest and the slowest of the group velocives of the various modes hence another
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form of dispersion.

The followings are somerealistic valuesfor propagationdelay in commercially avail-

ablemediums:

1- The propagation delay for a 500 meter long coaxial cable is 1.66x10 E-6 second [ FRAN-

TA]

2- The propagation delay for a ring of 1000 meter in circumference circle of optical fiber is

5085 nanosecond. [ JOHN87]

The propagation delay values mentioned above suggests that propagation delay is a

function of distance. These values imply that the distance between any two consecutive

nodes in the network system should be kept as short as possible. The separation between

two consecutive nodes in a local area network usually has minimum bound, the value of such

bound is different for different local area networks. For example, it is recommended in an

Ethernet system the separation between two consecutive nodes must be more than or equ',d

to 2.5 meter. This is to avoid having standing wave phenomena in the system.

A.3.2 Signal Strength Limitations

As it stated in section A.3.1 the real part of the propagation constant is the attenua-

tion constant. For a given transmission medium the attenuation constant defines the allow-

able transmitted frequencies through the transmission medium. Signals within the allowable

frequencies propagate through the transmission medium and experiences amplitude and

phase distortions. In addition to attenuation, dispersion also needs to be considered when

designing a local area network using optical fiber medium.

The power that the transmitting circuitry can provide is another parameter that should

be considered when accounting for signal strength in the process of designing a local area

network.
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A.3.3 Dynamic Range

In a local area network, the maximum distance between a sending node and a desig-

nated node is a function of the amount of power the seJ_ding node can output. For example, if

the designated node bandwidth is such that O: dBm < RSP< _ dBm, where (RSP) is the

power recognized by the designated node, then the distance between the two nodes should

be such that the power received at the designated noce is between O_ and 9. In a ProNET

10 system, for example, the amount of power that a sending node can provide is adjustable,

so it is possible to have a different length constraints between nodes. On the other hand in a

ProNET 80 system the amount of output power from a sending node is fixed, therefore the

distance between nodes is fixed by the dynamic range of the receivers.

A.4. Fault Tolerance and Reliability Features

A.4.1 Netware

In most applications software is needed to interface a node to a given LAN. In gener-

al, LAN operating system software ( in some cas,:s hardware also) uses a peer-to-peer

approach to workstations and file service. Any node, in these LANs, can be used simultane-

ously as a workstation and a shared network resouxce. With some LANs, all workstations

run the same operating system software regardless of whether their resources are shared

with the network or not. In other cases, workstatic_ns that will also offer resources to the

network require additional operating system components.

A.4.1 Hardware

Different LANs use different techniques for improving reliability. The following are

examples from commercially available systems.

A local area network using the FDDI standard for a 100 Mbps token ring with a fiber optic

transmission medium uses the following to improxe reliability:[COMM8611- Node bypass
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switch: This featureis usedto solvethe problemof a known brokennodeor a powereddown

node.

2- Counterrotatingring connections:The counterrotatingring is requiredfor all nodesdirect-

ly attachedin the ring. The secondring is usedas a standbyring or for concurrenttransmis-

sion. If a link fails in the active ring then the backup ring is used for transmissions. If a node

fails then the two rings are folded into one ring, which is approximately twice as long, main-

taining full connectivity.

3- Concentrators: The concentrators may be used to attach nodes to the ring. Each node has

a direct link to the concentrator. This allows any combination of nodes to be switched out of

the ring while retaining full connectivity for the remaining nodes.

A local area network using the HYPERchannel system, on the other hand, may have

four trunks dedicated for one connection between two nodes. This can be used for improving

the network reliability in that if one trunk fails the other three trunks can still be used for con-

tinuing the communication between the two nodes. The fault in the trunk can be detected in

two ways: [HYPERchannel literature]

1- Each of the connected nodes to the four trunks may have a self testing circuitry which

tests the trunks at random for faults. This will require space and time.

2- Software diagnostics and management may be used by the nodes connected to the four

trunks. This software will require memory allocation and part of the system bandwidth.

A.5 Guarantee of Data Delivery and Data Latency

Local area networks using token ring protocol use a "readbit" method through which a

receiving node can acknowledge the of receiving a message. The sending node recognizes

this bit when it strips the frame from the ring. A designated node in a local area network

using HYPERchannel system will use an acknowledgement of message delivery packet to

inform the sending node that its message has been received by the designated node. In a

local area network utilizing Ethernet the sending node assumes that its message is received
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the designatednode. No guaranteeof data latencyis availablefor a network using Ethernet.

If a collision is detecteda sendingnode will try to s_zndits messageto the designatednode

16timesandafterthatthesendinghostmustreinitialize transmission.

The latencyper physicalconnectionin a network using FDDI systemis 600 nanosec-

onds, the total latency is obtainedthrough multiplying the total numberof nodesin the net-

work by 600. The token transmissiontime is 0.00088milliseconds,to obtain maximumover-

head due to token transmissiontime the total number of nodesis multiplied by 0.00088.

[JOHN87]

A.6 Ease of Expansion

An Ethernet local area network is easy to expmd. Adding a node to a system already

in use is done through the use of a vampire tap. During the expansion the network retains

its full connectivity. On the other hand in a token ring local area network adding a node may

require a break in the ring, this is true if the local area network was not an FDDI system.

Removing a node from a non FDDI token ring local area network requires the addition of a

connector which results in an extra loss in the system.

A.7 Special Features

Table (A.4) includes LAN-to-LAN bridges that can be purchased separately for any

particular local area network interface boards or system.[ Connectivity, June 28,1988].

Table (A.5) includes telephone number of some LAN product companies.

Table (A.6) shows different companies or organizations and their corresponding soft-

ware at every ISO protocol layer.
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TABLE A.4 BRIDGES & GATEWAYS

Product Company LAN Bridges to Speed Price
supported what ? $

ACS 4030 Ethernet Ethernet 128 Kbps 4,975

NIl0 / E

Nll0 / TI

IB/1

IB/2

IB/3

Gator Box

Ethermodem

l:II Bridge

Marathon

Bridge

Advanced

computer

comm.

Applitek

Applitek

Bridge

Comm.

Cayman sys.

Chipcom

Ethernet

UnitLAN

Ethernet

Ethernet

LocaiTalk

Ethernet

Ethernet

IEEE 802.4

UnitLAN

T-I, RS-449

Broadband

Ethernet

T-I;V.35

RS-422

RS-232

Ethernet

LocaiTalk

Ethernet

Broadband

Broadband

Token bus

10 Mbps

56 Kbps to

2 Mbps

5 Mbps

19.2 Kbps

to

2.048 Mbps

10 Mbps

10 Mbps

8,000 -

14,000

6,000 -

11,000

3,495

9,950

HyBridge Cisco Sys. Ethernet Ethernet 6,200

Series 4100 Concord Co.

10 Mbps

IEEE 802.4

(MAP)

IEEE 802.4

(MAP)

Series 4200 IEEE 802.4

Broadband

Token bus

Ethernet

9,950 -

11,900
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TABLE A.4 BRIDGES & GATEWAYS

Product Company LAN Bridges to Speed Price
supported what ? $

ILAN-1 CrossComm I0 Mbps

ConnectLAN

InterBridge

28647A

28648A

LAN Span

8023

IB 3000

IB 30

IB 10

Hally Sys.

Hays Micro-
computer

Products

Hewlett

Packard

Infotron Sys.

LANEX

Micom

Interlan

Ethernet or

Token ring

or StarLan

Ethernet

AppleTalk

StarLAN

Ethernet

Ethernet

Ethernet

Ethernet,

Thin-wire

Ethernet

Fiber

backbone

Ethernet

Broadband

T-I, DDS

Fiber optic

AppleTalk

Ethernet

2.048Mbps

19.2 Kbps

V.35, 56 Kbps to

F.thernet

StarLAN

Broadband

Fiber optic

2.048 Mbps

10 MbpsEthernet,

Broadband,

Thin-wire

Ethernet,

_tarlan

(IB 10)

4,900 -

15,000

7,300 -

10,500

799

4,475 -

6,975

11,495

3,995

2,295 -

4,495

( 1,000 for

network

manage-

ment

option )
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TABLE A.4 BRIDGES & GATEWAYS

Product

MLB / 1000

MLB / 1500

MLB / 2000

MLB / 2500

Bridge Plus

Remote

Ethernet

Bridge

RetixGate

2244 & 2255

Series

Company

Microcom

Netways

RAD Network

Devices

Retix

LAN

supported

Token ring

or

Ethernet

Sytek

Ethernet,

StarLAN,

IEEE 802.3

Ethernet

Ethernet,

StarLAN

Bridges to
what ?

Speed

2 wire modem 19.2 Kbps

S-Interface 64 Kbps

4 wire leased

line, V.35,

RS-449 / 422

Ethernet,

StarLAN,

T-I, Fiber

optics &

Remote links

T-I, V.35,

RS-422 / 232

Ethernet,

StarLAN

56 Kbps

112 Kbps

10 Mbps

(Ethernet &

StarLAN),

1.544 Mbps

(others)

9.6 Kbps
to

2.048 Mbps[

Price

$

5,499 -

12,499

5,695 -

8,00O

6,950 -

7,950

1,950 -

2 Mbps

2,850

NetBridge Shiva AppleTalk AppleTalk 230 Kbps 399

8050 Ethernet LocalNet 600C

broadband

8O8O

8200 10 Mbps

Ethernet

7,000 -

9.500

IEEE 802.4

Broadband

Token Bus
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TABLE A.4 BRIDGES & GATEWAYS

Product Company LAN Bridges to Speed Price
supported what ? $

Ethernet 12,000 -TransLAN

350

TransLAN

III

TransRING

55O

LN, CN

Vitalink

Comm.

Wellfleet

Comm.

Token Ring

Ethernet,

IEEE 802.3

T4, V.35,

RS-449,

RS-232

Ethernet,

T.I,

Broadband,

I_easd line

9.6 Kbps

to

2.048Mbps

10 Mbps

(Ethernet),

1.544 Mbps

(T-I)

18 00

11,800
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TABLE A.4 BRIDGES & GATEWAYS

Product Company Features

ACS 4030 Packet filtering, X.25 support

NII0 / E

Nll0 / TI

IB/2

IB/3

Gator Box

Ethermodem

llI Bridge

Marathon

Bridge

Advanced

computer

comm.

Applitek

Applitek

Bridge

Comm.

Cayman sys.

Chipcom

Packet filtering

Packet filtering

Packet filtering

Packet filtering, supports up to 8 synchronous lines

Packet filtering, transparent protocol translation,

Kinetics FastPath emulation. Network management
software

Packet filtering, spanning tree-loop detection, 24,200

packets per second filter rate, remote management,

programmable filtering, LAN monitoring.

Packet filtering, 15,000 packets per second rate

HyBridge Cisco Sys. brouter capabilities

Series 4100

Series 4200

Concord Co. Packet filtering
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TABLE A.4 BRIDGES & GATEWAYS

Product

ILAN-I

ConnectLAN

InterBridge

28647A

28648A

LAN Span

8023

IB 3000

IB 30

IB 10

Company

CrossComm

Hally Sys.

Hays Micro-
computer

Products

Hewlett

Packard

Infotron Sys.

LANEX

Micom

Interlan

Features

Packet filtering, up to 4 synchronous lines, brouter

capabilities, alternate routing, distributed load

sharing, securit)access and control

2 synchronous lines, data compression

Packet filtering, brouter capabilities, IEEE 802.1

network management and spanning tree, remote

bridge management
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TABLE A.4 BRIDGES & GATEWAYS

Product

MLB / 1000

MLB / 1500

MLB / 2000

MLB / 2500

Bridge Plus

Remote

Ethernet

Bridge

RetixGate

2244 & 2255

Series

NetBridge

8O5O

8O8O

8200

Company

Microcom

Netways

RAD Network

Devices

Retix

Shiva

Sytek

Features

Data compression

Data compression

Packet filtering, brouter capabilities, security

filtering, link monitoring statistics, extensive

diagnostics, automatic address learning and purging

non-volatile memory

Supports up to 4 synchronous lines

Packet filtering, automatic configuration,

multimedia access, network management option

Packet filtering, brouter capabilities, network

manager software for creating and managing zone

access privileges

Packet filtering
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TABLE A.4 BRIDGES & GATEWAYS

Product Company Features

TransLAN

350

TransLAN

HI

TransRING

550

LN, CN

NETWORK
SYSTEM

Vitalink

Comm.

Wel|fleet

Comm.

EN601

Supports up to 8 synchronous lines, brouter

capabilities

Packet filtering, 16 synchronous lines (LN),

52 synchronous lines (CN), brouter capabilities,

concurrent routing option, D4 / GSF compatibly,

integrated T-I, integrated CSU, voice support

Filters Ethernet messages by source and
destination address using a listen and learn
procedure.
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TABLE A.5 LAN PRODUCT COMPANIES

TELEPHONE

COMPANY NAME

ADVANCED COMPUTER

COMMUNICATIONS

AMP INCORPORATED

APPLITEK

AT&T

BEST

CAYMAN

CHIPCOM

CISCO SYSTEMS, Inc.

CONDENOLL

CODEX

COMPUTROL

CONCORD

CORVUS

CROSS COMM CORP.

HAYES

NUMBER

TELEPHONE NUMBER

805-963-9431

717-564-0100

301-330-8700

1-800-37202447

608-565-7200

617-494-1999

617-890-6844

415-326-1941

914-965-6300

617-364-2000

203-544-9371

617-460-4646

408-281-4100

617-481-4060

404-449-8791
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TABLE A.5 LAN PRODUCT COMPANIES

TELEPHONE NUMBER

COMPANY NAME

HEWLETT PACKARD

HONEYWELL

LANEX

MARTIN MARIETTA

MICOM-Interlan

MICROWAVE FILTER

COMPANY; Inc.

NETWORK SYSTEMS

TELEPHONE NUMBER

301-258-2000

612-541-6500

301-595-4700

301-682-0900

617-263-9929

1-800-448-1666

404-255-6790

RAD data communication 201-587-8822

SHIVA 617-864-8500

SIGNETICS 408-99 !-2000

SYTEK 415-966-7300

VERSITRON 301-497-8600

WELLFLEET 617-275-2400
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TABLE A.6 LAN COMMUNICATION PROTOCOLS

COMPANY OR

ORGANIZATION

3Com

DEC / Net

NOVELL

HP

SUN

UC Berkeley

DARPA

Xerox / XNS

IBM / SNA

ISO / CCITT

THE APPLICATION LAYER

3+

MS-Net

Network Management Local Area Terminal Protocol

Netware

HP Network Services Office Share MS-Net

Network File System

Berkeley Services

ARPA Services

XNS Application Services

PC Network MS.Net IBM SNA Transaction Services

Virtual Terminal Service

Job Transfer & Manipulation

Authorization Service

Office Document Architecture.

Directory

File Transfer Access Management

Common Mgt. Information Protocol

Remote Operation Service

Commitment Concurrency Recovery

Message Handling Service X.400

Manufacturing Messaging Service (RS-511)

Association Control Service Element (ACSE)
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TABLE A.6 LAN COMMUNICATION PROTOCOLS

COMPANY OR THE PRESENTATION I JAYER
ORGANIZATION

3Com Server message Block Protocol (SMB)

NOVELL Netware File Service Protocol (NFSP)

HP Server message Block Protocol (SMB)

SUN Exchange Data Representative Protocol (XDR)

Xerox / XNS XNS Courier

IBM/SNA Server message Block Protocol (SMB) Presentation Services

ISO/CCITT Connection Oriented Presentation Protocol
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TABLE A.6 LAN COMMUNICATION PROTOCOLS

COMPANY OR

ORGANIZATION
THE SESSION LAYER

3Corn

DEC / Net

NOVELL

NETBIOS

Session Control Protocol

NETBIOS Emulator

HP Interprocess Communication NETBIOS

SUN Remote Procedure Call (RPC)

UC Berkeley BSD Socket

Xerox / XNS XNS Courier

IBM / SNA Data Flow Control NETBIOS

ISO/CCITT Connection Oriented Presentation Protocol
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TABLE A.6 LAN COMMUNICATION PROTOCOLS

COMPANY OR THE TRANSPORT LASER
ORGANIZATION

3Com MS-DOS Interval Network Driver

Protocol (MINDP)

DEC / Net Network Services Protocol (NSP)

NOVELL Netware Core Protocol (NCP)

DARPA

Xerox / XNS

IBM / SNA

ISO / CCITT

Internal Name Server Protocol (INSP)
User Datagram Protocol tUDP)
Packet Exchange Protocol (PXP)
Transmission Control Protocol (TCP)

XNS Tansport

Transmission Control

Transport Protocol
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TABLE A.6 LAN COMMUNICATION PROTOCOLS

COMPANY OR THE NETWORK LAYER
ORGANIZATION

3Com MS-DOS Interval Network Driver

Protocol (MINDP)

DEC/Net Routing Protocol Maintenance Operation Protocol (MOP)

DARPA

Xerox / XNS

Internal Control Message Protocol (ICMP)

Internal Protocol (IP)

Address Resolution Protocol (ARP)

Network

Internetwork Datagram Protocol (IDP)

IBM / SNA Path Control

ISO / CCITT X.25 Packet Level Protocol

Internetwork Protocol

End System Intermediate System ES-IS
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TABLE A.6 LAN COMMUNICATION PROTOCOLS

COMPANY OR

ORGANIZATION

DEC / Net

IEEE

ANSI

THE DATA LINK LAYER

Ethernet Data Link Control

802.2 Logical Link Control

802.3 CSMA/CD Media Access Control

802.4 Token Passing Bus Media Access Control

802.5 Token Passing Ring Media Access Control

FDDI Token Ring Media Access Control
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TABLE A.6 LAN COMMUNICATION PROTOCOLS

COMPANY OR

ORGANIZATION

DEC / Net

IEEE

IBM

ANSI

THE PHYSICAL LAYER

Ethernet 10 Mbps 50 ohm coax

Thin LAN 10 Mbps 50 ohm coax

Broadband 10 Mbps 75 ohm coax

10 BASE5 10 Mbps 50 ohm coax

10 BASE2 10 Mbps 50 ohm coax

10 BROAD 36 10 Mbps 75 ohm coax

1 BASE5 1 Mbps twisted pair

10 BASET 10 Mbps twisted pair

Carrierband 1 Mbps Phase Continuous FSK 75 ohm coax

Carrierband 5,10 Mbps Phase Coherent FSK 75 ohm coax

Broadband 1, 5, 10 Mbps Multilevel Duobinary AM/PSK 75 ohm
coax

1, 4 Mbps shielded twisted pair

16 Mbps shielded twisted pair

16 Mbps fiber optics

FDDI Physical Layer Protocol 100 Mbps fiber optic

FDDI Physical Media Dependent Interface
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